
...

.

.

Vimba

.

Vimba C Manual

.

1.9.1

..

Vimba C Manual 1.9.1

.

December 2021

.
.

.
Legal NoƟce

Legal Notice
Trademarks
Unless stated otherwise, all trademarks appearing in this document are brands protected by law.

Warranty
The information provided by Allied Vision is supplied without any guarantees or warranty whatsoever,
be it specific or implicit. Also excluded are all implicit warranties concerning the negotiability, the
suitability for specific applications or the non-breaking of laws and patents. Even if we assume that the
information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright
All texts, pictures and graphics are protected by copyright and other laws protecting intellectual
property.

All rights reserved.

Headquarters:
Allied Vision Technologies GmbH
Taschenweg 2a
D-07646 Stadtroda, Germany
Tel.: +49 (0)36428 6770
Fax: +49 (0)36428 677-28
e-mail: info@alliedvision.com

Vimba C Manual 1.9.1 2

mailto:info@alliedvision.com

.
.

.
Contents

Contents
1 Contacting Allied Vision 8

2 Document history and conventions 9
2.1 Document history . 10
2.2 Conventions used in this manual . 10

2.2.1 Styles . 11
2.2.2 Symbols . 11

3 General aspects of the API 12

4 API usage 13
4.1 API Version . 14
4.2 API Startup and Shutdown . 14
4.3 Listing available cameras . 15
4.4 Opening and closing a camera . 18
4.5 Accessing Features . 20
4.6 Image Capture (API) and Acquisition (Camera) . 27

4.6.1 Image Capture and Image Acquisition . 27
4.6.2 Image Capture . 28
4.6.3 Image Acquisition . 29

4.7 Using Events . 33
4.8 Saving and loading settings . 35
4.9 Triggering cameras . 36

4.9.1 External trigger . 36
4.9.2 Trigger over Ethernet – Action Commands . 37

4.10 Additional configuration: Listing Interfaces . 40
4.11 Troubleshooting . 41

4.11.1 GigE cameras . 41
4.11.2 USB cameras . 42
4.11.3 Goldeye CL cameras . 42
4.11.4 CSI-2 cameras . 42

4.12 Error Codes . 43

5 Function reference 44
5.1 Callbacks . 46

5.1.1 VmbInvalidationCallback . 46
5.1.2 VmbFrameCallback . 46

5.2 API Version . 47
5.2.1 VmbVersionQuery() . 47

5.3 API Initialization . 48

Vimba C Manual 1.9.1 3

.
.

.
Contents

5.3.1 VmbStartup() . 48
5.3.2 VmbShutdown() . 48

5.4 Camera Enumeration & Information . 49
5.4.1 VmbCamerasList() . 49
5.4.2 VmbCameraInfoQuery() . 49
5.4.3 VmbCameraOpen() . 50
5.4.4 VmbCameraClose() . 51

5.5 Features . 52
5.5.1 VmbFeaturesList() . 52
5.5.2 VmbFeatureInfoQuery() . 52
5.5.3 VmbFeatureListAffected() . 53
5.5.4 VmbFeatureListSelected() . 54
5.5.5 VmbFeatureAccessQuery() . 55

5.6 Integer . 56
5.6.1 VmbFeatureIntGet() . 56
5.6.2 VmbFeatureIntSet() . 56
5.6.3 VmbFeatureIntRangeQuery() . 57
5.6.4 VmbFeatureIntIncrementQuery() . 57

5.7 Float . 59
5.7.1 VmbFeatureFloatGet() . 59
5.7.2 VmbFeatureFloatSet() . 59
5.7.3 VmbFeatureFloatRangeQuery() . 60
5.7.4 VmbFeatureFloatIncrementQuery() . 60

5.8 Enum . 62
5.8.1 VmbFeatureEnumGet() . 62
5.8.2 VmbFeatureEnumSet() . 62
5.8.3 VmbFeatureEnumRangeQuery() . 63
5.8.4 VmbFeatureEnumIsAvailable() . 63
5.8.5 VmbFeatureEnumAsInt() . 64
5.8.6 VmbFeatureEnumAsString() . 65
5.8.7 VmbFeatureEnumEntryGet() . 65

5.9 String . 67
5.9.1 VmbFeatureStringGet() . 67
5.9.2 VmbFeatureStringSet() . 67
5.9.3 VmbFeatureStringMaxlengthQuery() . 68

5.10 Boolean . 69
5.10.1 VmbFeatureBoolGet() . 69
5.10.2 VmbFeatureBoolSet() . 69

5.11 Command . 71
5.11.1 VmbFeatureCommandRun() . 71
5.11.2 VmbFeatureCommandIsDone() . 71

Vimba C Manual 1.9.1 4

.
.

.
Contents

5.12 Raw . 72
5.12.1 VmbFeatureRawGet() . 72
5.12.2 VmbFeatureRawSet() . 72
5.12.3 VmbFeatureRawLengthQuery() . 73

5.13 Feature invalidation . 75
5.13.1 VmbFeatureInvalidationRegister() . 75
5.13.2 VmbFeatureInvalidationUnregister() . 75

5.14 Image preparation and acquisition . 77
5.14.1 VmbFrameAnnounce() . 77
5.14.2 VmbFrameRevoke() . 77
5.14.3 VmbFrameRevokeAll() . 78
5.14.4 VmbCaptureStart() . 78
5.14.5 VmbCaptureEnd() . 79
5.14.6 VmbCaptureFrameQueue() . 79
5.14.7 VmbCaptureFrameWait() . 80
5.14.8 VmbCaptureQueueFlush() . 80

5.15 Interface Enumeration & Information . 81
5.15.1 VmbInterfacesList() . 81
5.15.2 VmbInterfaceOpen() . 81
5.15.3 VmbInterfaceClose() . 82

5.16 Ancillary data . 83
5.16.1 VmbAncillaryDataOpen() . 83
5.16.2 VmbAncillaryDataClose() . 83

5.17 Memory/Register access . 84
5.17.1 VmbMemoryRead() . 84
5.17.2 VmbMemoryWrite() . 84
5.17.3 VmbRegistersRead() . 85
5.17.4 VmbRegistersWrite() . 85
5.17.5 VmbCameraSettingsSave() . 86
5.17.6 VmbCameraSettingsLoad() . 87

Vimba C Manual 1.9.1 5

.
.

.
List of Tables

List of Tables
1 Struct VmbCameraInfo_t . 16
2 Enum VmbAccessModeType is represented as VmbUint32_t through VmbAccessMode_t 18
3 Feature types and functions for reading and writing them 21
4 Struct VmbFeatureInfo_t . 22
5 Enum VmbFeatureDataType is represented as VmbUint32_t through

VmbFeatureData_t . 22
6 Enum VmbFeatureFlagsType is represented as VmbUint32_t through

VmbFeatureFlags_t . 23
7 Enum VmbFeatureVisibilityType is represented as VmbUint32_t through

VmbFeatureVisibility_t . 23
8 Struct VmbFeatureEnumEntry_t . 23
9 Basic features found on all cameras . 25
10 Struct VmbFrame_t . 31
11 Enum VmbFrameStatusType is represented as VmbInt32_t through VmbFrameStatus_t 32
12 Enum VmbFrameFlagsType is represented as VmbUint32_t through VmbFrameFlags_t 32
13 Struct VmbFeaturePersistSettings_t . 35
14 Struct VmbInterfaceInfo_t . 40
15 Enum VmbInterfaceType is represented as VmbUint32_t through

VmbInterfaceInfo_t . 41
16 Error codes returned by Vimba . 43

Vimba C Manual 1.9.1 6

.
.

.
LisƟngs

Listings
1 Get Cameras . 16
2 Open Camera . 18
3 Close Camera . 19
4 Get Features . 24
5 Reading a camera feature . 24
6 Writing features and running command features . 25
7 Streaming . 30
8 Getting notified about camera list changes . 33
9 Getting notified about feature changes . 34
10 Getting notified about camera events . 34
11 External trigger . 37
12 Action Commands . 39
13 Get Interfaces . 40

Vimba C Manual 1.9.1 7

.
.

.
1 ContacƟng Allied Vision

1 Contacting Allied Vision

Contact information on our website
https://www.alliedvision.com/en/meta-header/contact-us

Find an Allied Vision office or distributor
https://www.alliedvision.com/en/about-us/where-we-are

Email
info@alliedvision.com
support@alliedvision.com

Sales Offices
EMEA: +49 36428-677-230
North and South America: +1 978 225 2030
California: +1 408 721 1965
Asia-Pacific: +65 6634-9027
China: +86 (21) 64861133

Headquarters
Allied Vision Technologies GmbH
Taschenweg 2a
07646 Stadtroda
Germany

Tel: +49 (0)36428 677-0
Fax: +49 (0)36428 677-28

Vimba C Manual 1.9.1 8

https://www.alliedvision.com/en/meta-header/contact-us
https://www.alliedvision.com/en/about-us/where-we-are
mailto:info@alliedvision.com
mailto:support@alliedvision.com

...

2 Documenthistoryandconventions
..

This chapter includes:

.

2.1 Document history . 10
2.2 ConvenƟons used in this manual 10

2.2.1 Styles . 11
2.2.2 Symbols . 11

Vimba C Manual 1.9.1 9

.
.

.
2 Document history and convenƟons

2.1 Document history
Version Date Changes

1.0 2012-11-15 Initial version

1.1 2013-02-22 Different links, small changes

1.2 2013-06-18 Small corrections, layout changes

1.3 2014-07-10 Added function reference, re-structured and improved texts

1.4 2015-11-09 Added USB compatibility, renamed several Vimba components and doc-
uments ("AVT" no longer in use), links to new Allied Vision website

1.5 2016-02-27 Added Goldeye CL compatibility, new document layout

1.6 2017-05-01 Added chapter Triggering cameras (including Action Commands),
changed the position of VmbCaptureQueueFlush, several minor
changes, updated document layout

1.7 September 2017 Added some structs and enums, added information to chapter Trigger
over Ethernet – Action Commands, updated Troubleshooting, section
Goldeye CL cameras, some minor changes

1.7.1 May 2018 Bug fixes

1.8.0 June 2019 Bug fixes, correction of Listing 5

1.8.1 October 2019 Updated for use with GenTL 1.5

1.8.2 May 2020 Bug fixes

1.8.3 October 2020 Added standard-compliant ForceIP features

1.8.4 December 2020 Prepared for use with 5 GigE Vision cameras

1.8.5 May 2021 Several bug fixes, updated some links

1.9.0 October 2021 Added optional "alloc and announce" functionality

1.9.1 December 2021 Added CSI-2

2.2 ConvenƟons used in this manual
To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

Vimba C Manual 1.9.1 10

.
.

.
2 Document history and convenƟons

2.2.1 Styles

Style Function Example

Emphasis Programs, or highlighting important things Emphasis

Publication title Publication titles Title

Web reference Links to web pages Link

Document reference Links to other documents Document

Output Outputs from software GUI Output

Input Input commands, modes Input

Feature Feature names Feature

2.2.2 Symbols

Practical Tip

Safety-related instructions to avoid malfunctions
Instructions to avoid malfunctions

i Further information available online

Vimba C Manual 1.9.1 11

.
.

.
3 General aspects of the API

3 General aspects of the API
The purpose of Vimba's APIs is to enable programmers to interact with Allied Vision cameras
independent of the interface technology. To achieve this generic behavior, Vimba C API utilizes GenICam
transport layer modules to connect to the various camera interfaces.

For accessing functionality of either Vimba or the connected cameras, you have two ways of control:
You can use the fixed set of API functions and you can use GenICam Features by calling functions like,
e.g., VmbFeatureXXXSet or VmbFeatureXXXGet on entities like Vimba or the cameras.

This manual mainly deals with the API functions.

The Vimba Manual contains a description of the API concepts. To fully
understand the API, we recommend reading the Vimba Manual first.

Features are listed in the following documents:
• Allied Vision camera features are described in the Features Reference for

your camera.
• Vimba Manual (Vimba System features)

Vimba C Manual 1.9.1 12

https://www.alliedvision.com/en/support/technical-documentation.html
https://www.alliedvision.com/en/support/technical-documentation.html

...

4 APIusage
..

This chapter includes:

.

4.1 API Version . 14
4.2 API Startup and Shutdown 14
4.3 LisƟng available cameras 15
4.4 Opening and closing a camera 18
4.5 Accessing Features . 20
4.6 Image Capture (API) and AcquisiƟon (Camera) 27

4.6.1 Image Capture and Image AcquisiƟon 27
4.6.2 Image Capture 28
4.6.3 Image AcquisiƟon 29

4.7 Using Events . 33
4.8 Saving and loading seƫngs 35
4.9 Triggering cameras . 36

4.9.1 External trigger 36
4.9.2 Trigger over Ethernet – AcƟon Commands . . . 37

4.10 AddiƟonal configuraƟon: LisƟng Interfaces 40
4.11 TroubleshooƟng . 41

4.11.1 GigE cameras 41
4.11.2 USB cameras 42
4.11.3 Goldeye CL cameras 42
4.11.4 CSI-2 cameras 42

4.12 Error Codes . 43

Vimba C Manual 1.9.1 13

.
.

.
4 API usage

4.1 API Version
Even if new features are introduced to Vimba C API, your software remains backward compatible. Use
VmbVersionQuery to check the version number of Vimba C API.

4.2 API Startup and Shutdown
In order to start and shut down Vimba API, use these paired functions:

• VmbStartup initializes Vimba API.
• VmbShutdown shuts down Vimba API (as soon as all callbacks are finished).

VmbStartup and VmbShutdownmust always be paired. Calling the pair several times within the same
program is possible, but not recommended. Only VmbVersionQuery can be run without initializing
Vimba API. In order to free resources, shut down Vimba API when you don’t use it. Shutting down
Vimba API closes all opened cameras.

Vimba C Manual 1.9.1 14

.
.

.
4 API usage

4.3 LisƟng available cameras

For a quick start, see ListCameras example of the Vimba SDK.

VmbCamerasList enumerates all cameras recognized by the underlying transport layers. With this
command, the programmer can fetch all static details of a camera such as:

• Camera ID
• Camera model
• Name or ID of the connected interface (for example, the network or 1394 adapter)

The order in which the detected cameras are listed is determined by the order of camera discovery and
therefore not deterministic. Normally, Vimba recognizes cameras in the following order: USB - 1394 -
GigE - Camera Link. However, this order may change depending on your system configuration and the
accessories (for example, hubs or long cables).

GigE cameras:
Listing cameras over the network is a two-step process:

1. To enable camera discovery events, run one of the following commands:

• GeVDiscoveryAllOnce discovers all connected cameras once.

• GeVDiscoveryAllAuto continually emits discovery packets and thus constantly consumes
bandwidth. Use it only if you need to stay aware of changes to your network structure and
new cameras.

Both commands require a certain amount of time (GeVDiscoveryAllDuration) before returning.
2. To stop the camera discovery, run command GeVDiscoveryAllOff.

USB and 1394 cameras:
Changes to the plugged cameras are detected automatically. Consequently, any changes to the camera
list are announced via discovery event.

All listed commands are applied to all network interfaces, see the example Listing 1.

Camera Link cameras:
The specifications of Camera Link and GenCP do not support plug & play or discovery events. To detect
changes to the camera list, shutdown and startup the API by calling VmbShutdown and VmbStartup
consecutively.

Vimba C Manual 1.9.1 15

.
.

.
4 API usage

Listing 1: Get Cameras
bool bGigE;
VmbUint32_t nCount;
VmbCameraInfo_t* pCameras;

// We ask Vimba for the presence of a GigE transport layer
VmbError_t err = VmbFeatureBoolGet(gVimbaHandle , "GeVTLIsPresent", &bGigE);
if (VmbErrorSuccess == err)
{

if (true == bGigE)
{

// We use all network interfaces using the global Vimba handle
err = VmbFeatureCommandRun(gVimbaHandle , "GeVDiscoveryAllOnce");

}
}
if (VmbErrorSuccess == err)
{ // Get the number of connected cameras

err = VmbCamerasList(NULL, 0, &nCount, sizeof *pCameras);

if (VmbErrorSuccess == err)
{

// Allocate accordingly
pCameras = (VmbCameraInfo_t*)malloc(nCount * sizeof *pCameras);
// Get the cameras
err = VmbCamerasList(pCameras, nCount, &nCount, sizeof *pCameras);
// Print out each camera's name
for (VmbUint32_t i=0; i<nCount; ++i)
{

printf(" %s\n", pCameras[i].cameraName);
}

}
}

Struct VmbCameraInfo_t provides the entries listed in Table 1 for obtaining information about a
camera.

Struct Entry Purpose

const char* cameraIdString Unique identifier for each camera

const char* cameraName Name of the camera

const char* modelName The model name

const char* serialString The serial number

VmbAccessMode_t permittedAccess Access mode, see VmbAccessModeType

const char* interfaceIdString Unique value for each interface or bus

Table 1: Struct VmbCameraInfo_t

Vimba C Manual 1.9.1 16

.
.

.
4 API usage

Similiar to listing available cameras, the function VmbInterfacesList can be used to list available
interfaces, see chapter Additional configuration: Listing Interfaces.

Enable notifications of changed camera states
To get notified whenever a camera is detected, disconnected, or changes its open state:

• Run command feature GeVDiscoveryAllAuto on the System entity (GigE cameras only).
• Use VmbFeatureInvalidationRegister to register a callback with the Vimba System that gets

executed on the according event. The function pointer to the callback function has to be of type
VmbInvalidationCallback*.

VmbShutdown blocks until all callbacks have finished execution.

Functions that must not be called within the camera notification callback:
• VmbStartup
• VmbShutdown
• VmbCameraOpen
• VmbCameraClose
• VmbFeatureIntSet (and any other VmbFeature*Set function)
• VmbFeatureCommandRun

Vimba C Manual 1.9.1 17

.
.

.
4 API usage

4.4 Opening and closing a camera
A camera must be opened to control it and to capture images.

Call VmbCameraOpen and provide the ID of the camera and the desired access mode.

Vimba API provides several access modes:

• VmbAccessModeFull: read and write access. Use this mode to configure the camera features and
to acquire images (Goldeye CL cameras: configuration only)

• VmbAccessModeConfig: enables configuring the IP address of your GigE camera
• VmbAccessModeRead: read-only access. Setting features is not possible. However, for GigE

cameras that are already in use by another application, the acquired images can be transferred to
Vimba API (Multicast).

The enumerations are defined in VmbAccessModeType (or its VmbUint32_t representation
VmbAccessMode_t) as shown in Table 2.

Enumeration Integer Value Purpose

VmbAccessModeNone 0 No access

VmbAccessModeFull 1 Read and write access

VmbAccessModeRead 2 Read-only access

VmbAccessModeConfig 4 Configuration access (GigE)

Table 2: Enum VmbAccessModeType is represented as VmbUint32_t through VmbAccessMode_t

When a camera has been opened successfully, a handle for further access is returned.

An example for opening a camera retrieved from the camera list is shown in Listing 2.

Listing 2: Open Camera
VmbCameraInfo_t *pCameras;
VmbHandle_t hCamera;

// Get all known cameras as described in chapter "Listing available cameras"

// Open the first camera
if (VmbErrorSuccess == VmbCameraOpen(pCameras[0].cameraIdString ,

VmbAccessModeFull , hCamera))
{

printf("Camera opened, handle [0x%p] retrieved.\n", hCamera);
}

Vimba C Manual 1.9.1 18

.
.

.
4 API usage

Listing 3 shows how to close a camera using VmbCameraClose and the previously retrieved handle.

Listing 3: Close Camera
if (VmbErrorSuccess == VmbCameraClose(hCamera))
{

printf("Camera closed.\n");
}

Vimba C Manual 1.9.1 19

.
.

.
4 API usage

4.5 Accessing Features

For a quick start, see ListFeatures example of the Vimba SDK.

Vimba API provides several feature types, which all have their specific properties and functionalities, as
shown in Table 3.

As shown in Table 3, Vimba API provides its own set of access functions for every feature data type. The
static properties of a feature are held in struct VmbFeatureInfo_t as listed in Table 4. Its referenced
data types can be found in Tables 5, 6, and 7. It may be filled by calling VmbFeatureInfoQuery for an
individual feature, or by calling VmbFeaturesList for the whole list of features. Since not all features
are available all the time, it is necessary to query their current accessibility by calling function
VmbFeatureAccessQuery.

To query all available features of a camera, use VmbFeaturesList. This list does not change while the
camera is opened as shown in Listing 4.

Information about enumeration features, such as string and integer representation, is held in struct
VmbFeatureEnumEntry_t as shown in Table 8.

Vimba C Manual 1.9.1 20

.
.

.
4 API usage

Feature Type Operation Function

Enumeration Set VmbFeatureEnumSet

Get VmbFeatureEnumGet

Range VmbFeatureEnumRangeQuery

Other

VmbFeatureEnumIsAvailable
VmbFeatureEnumAsInt
VmbFeatureEnumAsString
VmbFeatureEnumEntryGet

Integer Set VmbFeatureIntSet

Get VmbFeatureIntGet

Range VmbFeatureIntRangeQuery

Other VmbFeatureIntIncrementQuery

Float Set VmbFeatureFloatSet

Get VmbFeatureFloatGet

String Set VmbFeatureStringSet

Get VmbFeatureStringGet

Range VmbFeatureStringMaxlengthQuery

Boolean Set VmbFeatureBoolSet

Get VmbFeatureBoolGet

Command Set VmbFeatureCommandRun

Get VmbFeatureCommandIsDone

Raw data Set VmbFeatureRawSet

Get VmbFeatureRawGet

Range VmbFeatureRawLengthQuery

Table 3: Feature types and functions for reading and writing them

Vimba C Manual 1.9.1 21

.
.

.
4 API usage

Struct Entry Purpose

const char* name Name used in the API

VmbFeatureData_t featureDataType Data type of this feature

VmbFeatureFlags_t featureFlags Access flags for this feature

const char* category Category this feature can be found in

const char* displayName Feature name to be used in GUIs

VmbUint32_t pollingTime Predefined polling time for volatile features

const char* unit Measuring unit as given in the XML file

const char* representation Representation of a numeric feature

VmbFeatureVisibility_t visibility GUI visibility

const char* tooltip Short description, e.g. for a tooltip

const char* description Longer description

const char* sfncNamespace Namespace this feature resides in

VmbBool_t isStreamable Indicates if a feature can be stored to or loaded from a file

VmbBool_t hasAffectedFeatures Indicates if the feature potentially affects other features

VmbBool_t hasSelectedFeatures Indicates if the feature selects other features

Table 4: Struct VmbFeatureInfo_t

Enumeration Integer Value Purpose

VmbFeatureDataInt 1 64-bit integer feature

VmbFeatureDataFloat 2 64-bit floating point feature

VmbFeatureDataEnum 3 Enumeration feature

VmbFeatureDataString 4 String feature

VmbFeatureDataBool 5 Boolean feature

VmbFeatureDataCommand 6 Command feature

VmbFeatureDataRaw 7 Raw (direct register access) feature

VmbFeatureDataNone 8 Feature with no data

Table 5: Enum VmbFeatureDataType is represented as VmbUint32_t through VmbFeatureData_t

Vimba C Manual 1.9.1 22

.
.

.
4 API usage

Enumeration Integer Value Purpose

VmbFeatureFlagsNone 0 No additional information is provided

VmbFeatureFlagsRead 1 Static info about read access. Current status
depends on access mode, check with VmbFea-
tureAccessQuery()

VmbFeatureFlagsWrite 2 Static info about write access. Current status
depends on access mode, check with VmbFea-
tureAccessQuery()

VmbFeatureFlagsVolatile 8 Value may change at any time

VmbFeatureFlagsModifyWrite 16 Value may change after a write

Table 6: Enum VmbFeatureFlagsType is represented as VmbUint32_t through VmbFeatureFlags_t

Enumeration Integer Value Purpose

VmbFeatureVisibilityUnknown 0 Feature visibility is not known

VmbFeatureVisibilityBeginner 1 Feature is visible in feature list (beginner
level)

VmbFeatureVisibilityExpert 2 Feature is visible in feature list (expert level)

VmbFeatureVisibilityGuru 3 Feature is visible in feature list (guru level)

VmbFeatureVisibilityInvisible 4 Feature is not visible in feature list

Table 7: Enum VmbFeatureVisibilityType is represented as VmbUint32_t through
VmbFeatureVisibility_t

Struct Entry Purpose

const char* name Name used in the API

const char* displayName Enumeration entry name to be used in GUIs

VmbFeatureVisibility_t visibility GUI visibility

const char* tooltip Short description, e.g. for a tooltip

const char* description Longer description

const char* sfncNamespace Namespace this feature resides in

VmbInt64_t intValue Integer value of this enumeration entry

Table 8: Struct VmbFeatureEnumEntry_t

Vimba C Manual 1.9.1 23

.
.

.
4 API usage

Listing 4: Get Features
VmbFeatureInfo_t *pFeatures;
VmbUint32_t nCount = 0;
VmbHandle_t hCamera;

// Open the camera as shown in chapter "Opening a camera"

// Get the number of features
VmbError_t err = VmbFeaturesList(hCamera, NULL, 0, &nCount, sizeof *pFeatures);

if (VmbErrorSuccess == err && 0 < nCount)
{

// Allocate accordingly
pFeatures = (VmbFeatureInfo_t*)malloc(nCount * sizeof *pFeatures);

// Get the features
err = VmbFeaturesList(hCamera, pFeatures , nCount, &nCount,

sizeof *pFeatures);

// Print out their name and data type
for (int i=0; i<nCount; ++i)
{

printf("Feature '%s' of type: %d\n", pFeatures[i].name,
pFeatures[i].featureDataType);

}
}

For an example of reading a camera feature, see Listing 5.

Listing 5: Reading a camera feature
VmbHandle_t hCamera;

// Open the camera as shown in chapter "Opening a camera"

VmbInt64_t nWidth;

if (VmbErrorSuccess == VmbFeatureIntGet(hCamera, "Width", &nWidth))
{

printf("Width: %ld\n", nWidth);
}

As an example for writing features to a camera and running a command feature, see Listing 6.

Vimba C Manual 1.9.1 24

.
.

.
4 API usage

Listing 6: Writing features and running command features
VmbHandle_t hCamera;

// Open the camera as shown in chapter "Opening a camera"

if (VmbErrorSuccess == VmbFeatureEnumSet(hCamera, "AcquisitionMode",
"Continuous"))

{
if (VmbErrorSuccess = VmbFeatureCommandRun(hCamera, "AcquisitionStart"))
{

printf("Acquisition successfully started\n");
}

}

Table 9 introduces the basic features of all cameras. A feature has a name, a type, and access flags such
as read-permitted and write-permitted.

Feature Type
Access
Flags Description

AcquisitionMode Enumeration R/W The acquisition mode of the camera. Value set: Contin-
uous, SingleFrame, MultiFrame.

AcquisitionStart Command Start acquiring images.

AcquisitionStop Command Stop acquiring images.

PixelFormat Enumeration R/W The image format. Possible values are e.g.: Mono8,
RGB8Packed, YUV411Packed, BayerRG8, …

Width Uint32 R/W Image width, in pixels.

Height Uint32 R/W Image height, in pixels.

PayloadSize Uint32 R Number of bytes in the camera payload, including the
image.

Table 9: Basic features found on all cameras

To get notified whenever a feature's value changes, use VmbFeatureInvalidationRegister to
register a callback that gets executed on the according event. For camera features, use the camera
handle for registration. The function pointer to the callback function has to be of type
VmbInvalidationCallback*.

VmbShutdown only returns after all callbacks have finished execution.

Vimba C Manual 1.9.1 25

.
.

.
4 API usage

Functions that must not be called within a feature invalidation callback:
• VmbStartup
• VmbShutdown
• VmbFeatureIntSet (and any other VmbFeature*Set function)
• VmbFeatureCommandRun

Vimba C Manual 1.9.1 26

.
.

.
4 API usage

4.6 Image Capture (API) and AcquisiƟon
(Camera)

The Vimba Manual describes the principles of synchronous and asynchronous
image acquisition.

For a quick start, see SynchronousGrab example of the Vimba SDK. For
advanced image acquisition including "alloc and announce" (optional, for more
efficient buffer allocation), see the AsynchronousGrab example.

4.6.1 Image Capture and Image AcquisiƟon
Image capture and image acquisition are two independent operations: Vimba API captures images, the
camera acquires images. To obtain an image from your camera, setup Vimba API to capture images
before starting the acquisition on the camera:

Make Vimba aware of

buffers

VmbFrameAnnounce()

 Start the capture

VmbCaptureStart()

engine

Hand buffers over

to Vimba

VmbCaptureFrameQueue()

Run camera

command feature

Acquisi onStart

Requeue frame

VmbCaptureFrameQueue()

Run

camera command

feature

Acquisi onStop

 Stop the capture engine

VmbCaptureEnd()

Revoke all frames

VmbFrameRevokeAll()

Prepare image aquisition

Start image acquisition

Image is within
callback function

Stop image acquisition

Clean up
Flush the capture queue

VmbCaptureQueueFlush()

Figure 1: Typical asynchronous application using Vimba C

Vimba C Manual 1.9.1 27

.
.

.
4 API usage

4.6.2 Image Capture

The bracketed tokens in this chapter refer to Listing 7.

To enable image capture, frame buffers must be allocated and the API must be prepared for incoming
frames.

To capture images sent by the camera, follow these steps:

1. Open the camera as described in chapter Opening and closing a camera.
2. Query the necessary buffer size through the feature PayloadSize (A). Allocate frame buffers of this

size (B).
3. Announce the frame buffers (1). To activate alloc and announce, set the pointer to the buffer to

NULL.
4. Start the capture engine (2).
5. Queue the frame you have just created with VmbCaptureFrameQueue, so that the buffer can be

filled when the acquisition has started (3).
The API is now ready. Start and stop image acquisition on the camera as described in
chapter Image Acquisition. How you proceed depends on the acquisition model you need:

• Synchronous: Use VmbCaptureFrameWait to receive an image frame while blocking your
execution thread.

• Asynchronous: Register a callback (C) that gets executed when capturing is complete. Use
the camera handle for registration. The function pointer to the callback function has to be of
type VmbFrameCallback*. Within the callback routine, queue the frame again after you
have processed it.

6. Stop the capture engine with VmbCaptureEnd.
7. Call VmbCaptureQueueFlush to cancel all frames on the queue.
8. Revoke the frames with VmbFrameRevokeAll to clear the buffers.

To assure correct continuous image capture, queue at least two or three frames. The appropriate
number of frames to be queued in your application depends on the frames per second the camera
delivers and on the speed with which you are able to re-queue frames (also taking into consideration
the operating system load). The image frames are filled in the same order in which they were queued.

Vimba C Manual 1.9.1 28

.
.

.
4 API usage

Always check that VmbFrame_t.receiveStatus equals
VmbFrameStatusComplete when a frame is returned to ensure the data is
valid.

Functions that must not be called within the Frame callback routine.
• VmbStartup
• VmbShutdown
• VmbCameraOpen
• VmbCameraClose
• VmbFrameAnnounce
• VmbFrameRevoke
• VmbFrameRevokeAll
• VmbCaptureStart
• VmbCaptureStop

4.6.3 Image AcquisiƟon
As soon as the API is prepared (see chapter Image Capture), you can start image acquisition on your
camera:

1. Set the feature AcquisitionMode (e.g., to Continuous).
2. Run the command AcquisitionStart (4).

To stop image acquisition, run command AcquisitionStop.

Listing 7 shows a simplified streaming example (without error handling).

Vimba C Manual 1.9.1 29

.
.

.
4 API usage

Listing 7: Streaming
#define FRAME_COUNT 3 // We choose to use 3 frames
VmbError_t err; // Vimba functions return an error code that the

// programmer should check for VmbErrorSuccess
VmbHandle_t hCamera // A handle to our opened camera
VmbFrame_t frames[FRAME_COUNT]; // A list of frames for streaming
VmbUInt64_t nPLS; // The payload size of one frame

// The callback that gets executed on every filled frame
void VMB_CALL FrameDoneCallback(const VmbHandle_t hCamera, VmbFrame_t *pFrame)
{

if (VmbFrameStatusComplete == pFrame->receiveStatus)
{

printf("Frame successfully received\n");
}
else
{

printf("Error receiving frame\n");
}
VmbCaptureFrameQueue(hCamera, pFrame, FrameDoneCallback);

}

// Get all known cameras as described in chapter "List available cameras"
// and open the camera as shown in chapter "Opening a camera"

// Get the required size for one image
err = VmbFeatureIntGet(hCamera, "PayloadSize", &nPLS); (A)
for (int i=0; i<FRAME_COUNT; ++i)
{

// Allocate accordingly
frames[i].buffer = malloc(nPLS); (B)
frames[i].bufferSize = nPLS; (B)
// Anounce the frame
// Set frame buffer to NULL to activate alloc and announce
VmbFrameAnnounce(hCamera, frames[i], sizeof(VmbFrame_t)); (1)

}

// Start capture engine on the host
err = VmbCaptureStart(hCamera); (2)

// Queue frames and register callback
for (int i=0; i<FRAME_COUNT; ++i)
{

VmbCaptureFrameQueue(hCamera, frames[i], (3)
FrameDoneCallback); (C)

}

// Start acquisition on the camera
err = VmbFeatureCommandRun(hCamera, "AcquisitionStart"); (4)

// Program runtime ...

// When finished , tear down the acquisition chain, close the camera and Vimba
err = VmbFeatureCommandRun(hCamera, "AcquisitionStop");
err = VmbCaptureEnd(hCamera);
err = VmbCaptureQueueFlush(hCamera);
err = VmbFrameRevokeAll(hCamera);
err = VmbCameraClose(hCamera);
err = VmbShutdown();Vimba C Manual 1.9.1 30

.
.

.
4 API usage

The struct VmbFrame_t represents not only the actual image data, but also additional information as
listed in Table 10.

To activate "alloc and announce", set the pointer to the buffer to NULL.

You can find the referenced data types in Tables 11 and 12.

Struct Entry Type

void* buffer Pointer to the actual image data (including ancil-
lary data). Can be NULL.

VmbUint32_t bufferSize Size of the data buffer

void* context[4] 4 void pointers that can be employed by the user
(e.g. for storing handles)

VmbFrameStatus_t receiveStatus Resulting status of the receive operation

VmbFrameFlags_t receiveFlags Flags indicating which additional frame informa-
tion is available

VmbUint32_t imageSize Size of the image data inside the data buffer

VmbUint32_t ancillarySize Size of the ancillary data inside the data buffer

VmbPixelFormat_t pixelFormat Pixel format of the image

VmbUint32_t width Width of an image

VmbUint32_t height Height of an image

VmbUint32_t offsetX Horizontal offset of an image

VmbUint32_t offsetY Vertical offset of an image

VmbUint64_t frameID Unique ID of this frame in this stream

VmbUint64_t timestamp Timestamp set by the camera

Table 10: Struct VmbFrame_t

Vimba C Manual 1.9.1 31

.
.

.
4 API usage

Enumeration Integer Value Purpose

VmbFrameStatusComplete 0 Frame has been completed without errors

VmbFrameStatusIncomplete -1 Frame could not be filled to the end

VmbFrameStatusTooSmall -2 Frame buffer was too small

VmbFrameStatusInvalid -3 Frame buffer was invalid

Table 11: Enum VmbFrameStatusType is represented as VmbInt32_t through VmbFrameStatus_t

Enumeration Integer Value Purpose

VmbFrameFlagsNone 0 No additional information is provided

VmbFrameFlagsDimension 1 Frame's dimension is provided

VmbFrameFlagsOffset 2 Frame's offset is provided (ROI)

VmbFrameFlagsFrameID 4 Frame's ID is provided

VmbFrameFlagsTimestamp 8 Frame's timestamp is provided

Table 12: Enum VmbFrameFlagsType is represented as VmbUint32_t through VmbFrameFlags_t

Vimba C Manual 1.9.1 32

.
.

.
4 API usage

4.7 Using Events
Events serve many purposes and can have several origins, e.g., generic camera events or just feature
changes.

All of these cases are handled in Vimba C uniformly with the same mechanism: You simply register a
notification callback with VmbFeatureInvalidationRegister for the feature of your choice which
gets called when there is a change to that feature.

Three examples are listed in this chapter:

• Camera list notifications
• Camera event features
• Tracking invalidations of features

See Listing 8 for an example of being notified about camera list changes. (For more details about
System features see the Vimba Manual).

Listing 8: Getting notified about camera list changes
// 1. define callback function
void VMB_CALL CameraListCB(VmbHandle_t handle, const char* name, void* context)
{

char cameraName[255];
char callbackReason[255];

// Get the name of the camera due to which the callback was triggered
VmbFeatureStringGet(handle, "DiscoveryCameraIdent", cameraName);

// Get the reason why the callback was triggered. Possible values:
// Missing (0), a known camera disappeared from the bus
// Detected (1), a new camera was discovered
// Reachable (2), a known camera can be accessed
// Unreachable (3), a known camera cannot be accessed anymore

VmbFeatureEnumGet(handle, "DiscoveryCameraEvent", callbackReason);
printf("Event was fired by camera %s because %s\n", cameraName ,

callbackReason);
}

// 2. register the callback for that event
VmbFeatureInvalidationRegister(gVimbaHandle , "DiscoveryCameraEvent",

CameraListCB , NULL);

// 3. for GigE cameras, invoke "GeVDiscoveryAllOnce"
VmbFeatureCommandRun(gVimbaHandle , "GeVDiscoveryAllOnce");

See Listing 9 for an example of being notified about feature changes.

Vimba C Manual 1.9.1 33

.
.

.
4 API usage

Listing 9: Getting notified about feature changes
// 1. define callback function
void VMB_CALL WidthChangeCB(VmbHandle_t handle, const char* name, void* context)
{

printf("Feature changed: %s\n", name);
}

// 2. register callback for changes to Width
VmbFeatureInvalidationRegister(cameraHandle , "Width", WidthChangeCB , NULL);

// as an example, binning is changed, so the callback will be run
VmbFeatureIntegerSet(cameraHandle , "Binning", 4);

GigE camera events are also handled with the same mechanism of feature invalidation. See Listing 10
for an example.

Listing 10: Getting notified about camera events
// 1. define callback function
void VMB_CALL EventCB(VmbHandle_t handle, const char* name, void* context)
{

printf("Event was fired: %s\n", name);
}

// 2. select "AcquisitionStart" event
VmbFeatureEnumSet(cameraHandle , "EventSelector", "AcquisitionStart");

// 3. switch on the event notification
VmbFeatureEnumSet (cameraHandle , "EventNotification", "On");

// 4. register the callback for that event
VmbFeatureInvalidationRegister(cameraHandle , "EventAcquisitionStart",

EventCB, NULL);

Vimba C Manual 1.9.1 34

.
.

.
4 API usage

4.8 Saving and loading seƫngs
Additionally to the user sets stored inside the cameras, you can save the feature values as an XML file to
your host PC. For example, you can configure your camera with Vimba Viewer, save the settings as a file,
and load them with Vimba API. To do this, use the functions VmbCameraSettingsLoad and
VmbCameraSettingsSave.

For a quick start, see example LoadSaveSettings.

To control which features are saved, use the struct listed in Table 13. Note that saving and loading all
features including look-up tables may take several minutes. You can manually edit the XML file if you
want only certain features to be restored.

Struct Entry Purpose

VmbFeaturePersist_t persistType Controls which features are to be saved. Valid valures are:
• VmbFeaturePersistAll: Save all features to XML, in-

cluding look-up tables
• VmbFeaturePersistStreamable: Save only features

marked as streamable, excluding look-up tables
• VmbFeaturePersistNoLUT: Default, save all features

except look-up tables

Vmbuint32_t maxIterations Number of iterations. LoadCameraSettings iterates
through all given features of the XML file and tries
to set each value to the camera. Because of com-
plex feature dependencies, writing a feature value may
impact another feature that has already been set by
LoadCameraSettings. To ensure all values arewritten as
desired, the feature list can be looped several times, given
by this parameter. Default value: 5, valid values: 1...10

Table 13: Struct VmbFeaturePersistSettings_t

Vimba C Manual 1.9.1 35

.
.

.
4 API usage

4.9 Triggering cameras

Before triggering, startup Vimba and open the camera(s).

To easily configure the camera's trigger settings, use Vimba Viewer and
save/load the settings.

4.9.1 External trigger
The following code snippet shows how to trigger your camera with an external device.

Vimba C Manual 1.9.1 36

.
.

.
4 API usage

Listing 11: External trigger
// Startup Vimba, get cameras and open cameras as usual

// Trigger cameras according to their interface
// Configure trigger input line and selector , switch trigger on
switch(pInterfacetype)
{
case VmbInterfaceEthernet:

VmbFeatureEnumSet(pCameraHandle , "TriggerSelector", "FrameStart");
VmbFeatureEnumSet(pCameraHandle , "TriggerSource", "Line1");
VmbFeatureEnumSet(pCameraHandle , "TriggerMode", "On");
break;

// USB: VmbInterfaceUsb
// CSI-2: VmbInterfaceCSI2

case VmbInterfaceUsb:
VmbFeatureEnumSet(pCameraHandle , "LineSelector", "Line0");
VmbFeatureEnumSet(pCameraHandle , "LineMode", "Input");
VmbFeatureEnumSet(pCameraHandle , "TriggerSelector", "FrameStart");
VmbFeatureEnumSet(pCameraHandle , "TriggerSource", "Line0");
VmbFeatureEnumSet(pCameraHandle , "TriggerMode", "On");
break;

case VmbInterfaceFirewire:
VmbFeatureEnumSet(pCameraHandle , "LineSelector", "Line0");
VmbFeatureEnumSet(pCameraHandle , "LineMode", "Input");
VmbFeatureEnumSet(pCameraHandle , "LineRouting", "Trigger");
VmbFeatureEnumSet(pCameraHandle , "TriggerSelector", "ExposureStart");
VmbFeatureEnumSet(pCameraHandle , "TriggerSource", "InputLines");
VmbFeatureEnumSet(pCameraHandle , "TriggerMode", "On");
break;

}

4.9.2 Trigger over Ethernet – AcƟon Commands
Triggering via the AcquisitionStart command (see chapter Image Acquisition) is supported by all
cameras. However, it is less precise than triggering with an external device connected to the camera's
I/O port.

Selected GigE cameras with the latest firmware additionally support Action Commands. With Action
Commands, you can broadcast a trigger signal simultaneously to multiple GigE cameras via GigE cable.
Action Commands must be set first to the camera(s) and then to the Vimba API, which sends the Action
Commands to the camera(s). As trigger source, select Action0 or Action1.

ActionControl parameters
The following ActionControl parameters must be configured on the camera(s) and then on the host PC.

Vimba C Manual 1.9.1 37

.
.

.
4 API usage

• ActionDeviceKeymust be equal on the camera and on the host PC. Before a camera accepts an
Action Command, it verifies if the received key is identical with its configured key. Note that
ActionDeviceKeymust be set each time the camera is opened.
Range (camera and host PC): 0 to 4294967295

• ActionGroupKeymeans that each camera can be assigned to exactly one group for Action0 and a
different group for Action1. All grouped cameras perform an action at the same time. If this key is
identical on the sender and the receiving camera, the camera performs the assigned action.
Range (camera and host PC): 0 to 4294967295

• ActionGroupMask serves as filter that specifies which cameras within a group react on an Action
Command. It can be used to create sub-groups.
Range (camera): 0 to 4294967295
Range (host PC): 1 to 4294967295

Executing the API feature ActionCommand sends the ActionControl parameters to the cameras and
triggers the assigned action, for example, image acquisition. Before an Action Command is executed,
each camera validates the received ActionControl parameter values against its configured values. If they
are not equal, the camera ignores the command.

More information
For more information about Action Commands, see:

• The ActionCommands programming example of the Vimba SDK
• The application note Trigger over Ethernet - Action Commands
• Listing 12 shows how to send out an Action Command to all connected cameras via all known

Gigabit Ethernet interfaces.

Vimba C Manual 1.9.1 38

https://www.alliedvision.com/fileadmin/content/documents/products/cameras/various/appnote/GigE/Action-Commands_Appnote.pdf

.
.

.
4 API usage

Listing 12: Action Commands

// Additionally to this code snippet:
// Configure the trigger settings and add image streaming

VmbUint32_t count;
VmbCameraInfo_t* cameras;
VmbHandle_t* handles;

int deviceKey = 11, groupKey = 22, groupMask = 33;

// Start Vimba and discover GigE cameras
VmbStartup();

VmbFeatureBoolGet(gVimbaHandle , "GeVTLIsPresent", &isGigE);
if(VmbBoolTrue == isGigE)
{

VmbFeatureIntSet(gVimbaHandle , "GeVDiscoveryAllDuration", 250);
VmbFeatureCommandRun(gVimbaHandle , "GeVDiscoveryAllOnce");

}

// Get cameras
VmbCamerasList(NULL, 0, &count, sizeof(*cameras));
cameras = (VmbCameraInfo_t *) malloc(count * sizeof(*cameras));
VmbCamerasList(cameras, count, &count, sizeof(*cameras));

// Allocate space for handles
handles = (VmbHandle_t*) malloc(count * sizeof(VmbHandle_t));

for(int i=0; i<count; ++i)
{

const char* cameraId = cameras[i].cameraIdString;

// Open camera
VmbCameraOpen(cameraId, VmbAccessModeFull , &handles[i]);

// Set device key, group key and group mask
// Configure trigger settings (see programming example)
VmbFeatureIntSet(handles[i], "ActionDeviceKey", deviceKey);
VmbFeatureIntSet(handles[i], "ActionGroupKey", groupKey);
VmbFeatureIntSet(handles[i], "ActionGroupMask", groupMask);

}

// Set Action Command to API
// Allocate buffers and enable streaming (see programming example)
VmbFeatureIntSet(gVimbaHandle , "ActionDeviceKey", deviceKey);
VmbFeatureIntSet(gVimbaHandle , "ActionGroupKey", groupKey);
VmbFeatureIntSet(gVimbaHandle , "ActionGroupMask", groupMask);

// Send Action Command
VmbFeatureCommandRun(gVimbaHandle , "ActionCommand");

// If no further Actions will be applied: close cameras, shutdown API, and
// free allocated space as usual

Vimba C Manual 1.9.1 39

.
.

.
4 API usage

4.10 AddiƟonal configuraƟon: LisƟng
Interfaces

VmbInterfacesList enumerates all Interfaces (such as NICs or frame grabbers) recognized by the
underlying transport layers.
See Listing 13 for an example.

Listing 13: Get Interfaces
VmbUint32_t nCount;
VmbInterfaceInfo_t *pInterfaces;

// Get the number of connected interfaces
VmbInterfacesList(NULL, 0, &nCount, sizeof *pInterfaces);

// Allocate accordingly
pInterfaces = (VmbInterfaceInfo_t*)malloc(nCount * sizeof *pInterfaces);

// Get the interfaces
VmbInterfacesList(pCameras, nCount, &nCount, sizeof *pInterfaces);

Struct VmbInterfaceInfo_t provides the information about an interface as listed in Table 14.

Struct Entry Purpose

const char* interfaceIdString The unique ID

VmbInterface_t interfaceType The camera interface type

const char* interfaceName The name

const char* serialString The serial number

VmbAccessMode_t permittedAccess The mode to open the interface

Table 14: Struct VmbInterfaceInfo_t

To get notified whenever an interface is detected or disconnected, use
VmbFeatureInvalidationRegister to register a callback that gets executed on the according event.
Use the global Vimba handle for registration. The function pointer to the callback function has to be of
type VmbInvalidationCallback*.

VmbShutdown blocks until all callbacks have finished execution.

Vimba C Manual 1.9.1 40

.
.

.
4 API usage

Enumeration Integer Value Purpose

VmbInterfaceUnknown 0 Interface is not known to this version of the API

VmbInterfaceFirewire 1 IEEE 1394

VmbInterfaceEthernet 2 GigE

VmbInterfaceUsb 3 USB

VmbInterfaceCL 4 Camera Link

VmbInterfaceCSI2 5 CSI-2

Table 15: Enum VmbInterfaceType is represented as VmbUint32_t through VmbInterfaceInfo_t

The list of functions that must not be called within the callback routine:
• VmbStartup
• VmbShutdown
• VmbFeatureIntSet (and any other VmbFeature*Set function)
• VmbFeatureCommandRun

4.11 TroubleshooƟng
4.11.1 GigE cameras

To get your 5 GigE Vision camera up and running, see the User Guide for your
camera.

Make sure to set the PacketSize feature of GigE cameras to a value supported by your network card. If
you use more than one camera on one interface, the available bandwidth has to be shared between the
cameras.

• GVSPAdjustPacketSize configures GigE cameras to use the largest possible packets.
• DeviceThroughputLimit (legacy name: StreamBytesPerSecond) enables to configure the individual

bandwidth if multiple cameras are used.
• The maximum packet size might not be available on all connected cameras. Try to reduce the

packet size.

Further readings:

Please find detailed installation instructions in the User Guide for your camera.

Vimba C Manual 1.9.1 41

https://www.alliedvision.com/en/support/technical-documentation.html
https://www.alliedvision.com/en/support/technical-documentation.html
https://www.alliedvision.com/en/support/technical-documentation.html

.
.

.
4 API usage

4.11.2 USB cameras
Under Windows, make sure the correct driver is applied. For more details, see Vimba Manual, chapter
Vimba Driver Installer.

To achieve best performance, see the technical manual of your USB camera, chapter Troubleshooting:
https://www.alliedvision.com/en/support/technical-documentation.html

4.11.3 Goldeye CL cameras
• The pixel format, all features affecting the image size, and DeviceTapGeometry must be identical in

Vimba and the frame grabber software.
• Make sure to select an image size supported by the frame grabber.
• The baud rate of the camera and the frame grabber must be identical.

4.11.4 CSI-2 cameras
Visit https://github.com/alliedvision for information about limitations of your board or the driver.

Vimba C Manual 1.9.1 42

https://www.alliedvision.com/en/support/technical-documentation.html

.
.

.
4 API usage

4.12 Error Codes
All Vimba API functions return an error code of type VmbErrorType.
Typical errors are listed with each function in chapter Function reference. However, any of the error
codes listed in Table 16 might be returned.

Error Code Value Description

VmbErrorSuccess 0 No error

VmbErrorInternalFault -1 Unexpected fault in Vimba or driver

VmbErrorApiNotStarted -2 VmbStartup was not called before the current command

VmbErrorNotFound -3 The designated instance (camera, feature, etc.) cannot be found

VmbErrorBadHandle -4 The given handle is not valid

VmbErrorDeviceNotOpen -5 Device was not opened for usage

VmbErrorInvalidAccess -6 Operation is invalid with the current access mode

VmbErrorBadParameter -7 One of the parameters is invalid (usually an illegal pointer)

VmbErrorStructSize -8 The given struct size is not valid for this version of the API

VmbErrorMoreData -9 More data available in a string/list than space is provided

VmbErrorWrongType -10 Wrong feature type for this access function

VmbErrorInvalidValue -11 The value is not valid; either out of bounds or not an increment
of the minimum

VmbErrorTimeout -12 Timeout during wait

VmbErrorOther -13 Other error

VmbErrorResources -14 Resources not available (e.g., memory)

VmbErrorInvalidCall -15 Call is invalid in the current context (e.g. callback)

VmbErrorNoTL -16 No transport layers are found

VmbErrorNotImplemented -17 API feature is not implemented

VmbErrorNotSupported -18 API feature is not supported

VmbErrorIncomplete -19 The current operation was not completed (e.g. a multiple reg-
isters read or write)

VmbErrorIO -20 There was an error during read or write with devices (camera or
disk)

Table 16: Error codes returned by Vimba

Vimba C Manual 1.9.1 43

...

5 Function reference
..

This chapter includes:

.

5.1 Callbacks . 46
5.2 API Version . 47
5.3 API IniƟalizaƟon . 48
5.4 Camera EnumeraƟon & InformaƟon 49
5.5 Features . 52
5.6 Integer . 56
5.7 Float . 59
5.8 Enum . 62
5.9 String . 67
5.10 Boolean . 69
5.11 Command . 71
5.12 Raw . 72
5.13 Feature invalidaƟon . 75
5.14 Image preparaƟon and acquisiƟon 77
5.15 Interface EnumeraƟon & InformaƟon 81
5.16 Ancillary data . 83
5.17 Memory/Register access 84

Vimba C Manual 1.9.1 44

.
.

.
5 FuncƟon reference

In this chapter, you can find a complete list of all methods that are described in VimbaC.h.

All function and type definitions are designed to be platform-independent and portable from other
languages.

General conventions:

• Method names are composed in the following manner:

– Vmb"Action". Example: VmbStartup()
– Vmb"Entity""Action". Example: VmbInterfaceOpen()
– Vmb"ActionTarget""Action". Example: VmbFeaturesList()
– Vmb"Entity""SubEntity""Action". Example: VmbFeatureCommandRun()

• Methods dealing with features, memory, or registers accept a handle from the following entity list
as first parameter: System, Camera, Interface, and AncillaryData. All other methods taking handles
accept only a specific handle.

• Strings (generally declared as "const char *") are assumed to have a trailing 0 character.
• All pointer parameters should of course be valid, except if stated otherwise.
• To ensure compatibility with older programs linked against a former version of the API, all struct*

parameters have an accompanying sizeofstruct parameter.
• Functions returning lists are usually called twice: once with a zero buffer to get the length of the

list, and then again with a buffer of the correct length.

Methods in this chapter are always described in the same way:

• The caption states the name of the function without parameters
• The first item is a brief description
• The parameters of the function are listed in a table (with type, name, and description)
• The return values are listed
• Finally, a more detailed description about the function is given

Vimba C Manual 1.9.1 45

.
.

.
5 FuncƟon reference

5.1 Callbacks
5.1.1 VmbInvalidaƟonCallback
Invalidation Callback type for a function that gets called in a separate thread and has been registered
with VmbFeatureInvalidationRegister()

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in void* pUserContext Pointer to the user context, see VmbFeatureInvalida-
tionRegister

While the callback is run, all feature data is atomic. After the callback finishes,
the feature data might be updated with new values.

Do not spend too much time in this thread; it will prevent the feature values
from being updated from any other thread or the lower-level drivers.

5.1.2 VmbFrameCallback
Frame Callback type for a function that gets called in a separate thread if a frame has been queued with
VmbCaptureFrameQueue()

Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera

out VmbFrame_t* pFrame Frame completed

Vimba C Manual 1.9.1 46

.
.

.
5 FuncƟon reference

5.2 API Version
5.2.1 VmbVersionQuery()
Retrieve the version number of VimbaC.

Type Name Description

out VmbVersionInfo_t* pVersionInfo Pointer to the struct where version information is
copied

in VmbUint32_t sizeofVersionInfo Size of structure in bytes

• VmbErrorSuccess: If no error
• VmbErrorStructSize: The given struct size is not valid for this version of the API
• VmbErrorBadParameter: If "pVersionInfo" is NULL.

This function can be called at anytime, even before the API is initialized. All
other version numbers may be queried via feature access.

Vimba C Manual 1.9.1 47

.
.

.
5 FuncƟon reference

5.3 API IniƟalizaƟon
5.3.1 VmbStartup()
Initialize the VimbaC API.

• VmbErrorSuccess: If no error
• VmbErrorInternalFault: An internal fault occurred

On successful return, the API is initialized; this is a necessary call.

This method must be called before any VimbaC function other than
VmbVersionQuery() is run.

5.3.2 VmbShutdown()
Perform a shutdown on the API.

This will free some resources and deallocate all physical resources if applicable.

Vimba C Manual 1.9.1 48

.
.

.
5 FuncƟon reference

5.4 Camera EnumeraƟon & InformaƟon
5.4.1 VmbCamerasList()
Retrieve a list of all cameras.

Type Name Description

out VmbCameraInfo_t* pCameraInfo Array of VmbCameraInfo_t, allocated by the caller.
The camera list is copied here. May be NULL if
pNumFound is used for size query.

in VmbUint32_t listLength Number of VmbCameraInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbCameraInfo_t elements found.

in VmbUint32_t sizeofCameraInfo Size of the structure (if pCameraInfo == NULL this
parameter is ignored)

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: The given list length was insufficient to hold all available entries
• VmbErrorBadParameter: If "pNumFound" was NULL

Camera detection is started with the registration of the
"DiscoveryCameraEvent" event or the first call of VmbCamerasList(), which may
be delayed if no "DiscoveryCameraEvent" event is registered (see examples).
VmbCamerasList() is usually called twice: once with an empty array to query the
list length, and then again with an array of the correct length. If camera lists
change between the calls, pNumFound may deviate from the query return.

5.4.2 VmbCameraInfoQuery()
Retrieve information on a camera given by an ID.

Vimba C Manual 1.9.1 49

.
.

.
5 FuncƟon reference

Type Name Description

in const char* idString ID of the camera

out VmbCameraInfo_t* pInfo Structure where information will be copied. May be
NULL.

in VmbUint32_t sizeofCameraInfo Size of the structure

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated camera cannot be found
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorBadParameter: If "idString" was NULL

May be called if a camera has not been opened by the application yet. Examples
for "idString": "DEV_81237473991" for an ID given by a transport layer,
"169.254.12.13" for an IP address, "000F314C4BE5" for a MAC address or
"DEV_1234567890" for an ID as reported by Vimba

5.4.3 VmbCameraOpen()
Open the specified camera.

Type Name Description

in const char* idString ID of the camera

in VmbAccessMode_t accessMode Determines the level of control you have on the cam-
era

out VmbHandle_t* pCameraHandle A camera handle

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated camera cannot be found
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorInvalidCall: If called from frame callback
• VmbErrorBadParameter: If "idString" or "pCameraHandle" is NULL

Vimba C Manual 1.9.1 50

.
.

.
5 FuncƟon reference

A camera may be opened in a specific access mode, which determines the level
of control you have on a camera. Examples for "idString": "DEV_81237473991"
for an ID given by a transport layer, "169.254.12.13" for an IP address,
"000F314C4BE5" for a MAC address or "DEV_1234567890" for an ID as
reported by Vimba

5.4.4 VmbCameraClose()
Close the specified camera.

Type Name Description

in const VmbHandle_t cameraHandle A valid camera handle

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorInvalidCall: If called from frame callback

Depending on the access mode this camera was opened with, events are killed,
callbacks are unregistered, and camera control is released.

Vimba C Manual 1.9.1 51

.
.

.
5 FuncƟon reference

5.5 Features
5.5.1 VmbFeaturesList()
List all the features for this entity.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

out VmbFeatureInfo_t* pFeatureInfoList An array of VmbFeatureInfo_t to be filled by the
API. May be NULL if pNumFund is used for size
query.

in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found.
May be NULL if pFeatureInfoList is not NULL.

in VmbUint32_t sizeofFeatureInfo Size of a VmbFeatureInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size of VmbFeatureInfo_t is not valid for this version of the

API
• VmbErrorMoreData: The given list length was insufficient to hold all available entries

This method lists all implemented features, whether they are currently available
or not. The list of features does not change as long as the camera/interface is
connected. "pNumFound" returns the number of VmbFeatureInfo elements.
This function is usually called twice: once with an empty list to query the length
of the list, and then again with an list of the correct length.

5.5.2 VmbFeatureInfoQuery()
Query information about the constant properties of a feature.

Vimba C Manual 1.9.1 52

.
.

.
5 FuncƟon reference

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbFeatureInfo_t* pFeatureInfo The feature info to query

in VmbUint32_t sizeofFeatureInfo Size of the structure

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size is not valid for this version of the API

Users provide a pointer to VmbFeatureInfo_t, which is then set to the internal
representation.

5.5.3 VmbFeatureListAffected()
List all the features that might be affected by changes to this feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbFeatureInfo_t* pFeatureInfoList An array of VmbFeatureInfo_t to be filled by the
API. May be NULL if pNumFound is used for size
query.

in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found.
May be NULL is pFeatureInfoList is not NULL.

in VmbUint32_t sizeofFeatureInfo Size of a VmbFeatureInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Vimba C Manual 1.9.1 53

.
.

.
5 FuncƟon reference

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size of VmbFeatureInfo_t is not valid for this version of the

API
• VmbErrorMoreData: The given list length was insufficient to hold all available entries

This method lists all affected features, whether they are currently available or
not. The value of affected features depends directly or indirectly on this feature
(including all selected features). The list of features does not change as long as
the camera/interface is connected. This function is usually called twice: once
with an empty array to query the length of the list, and then again with an array
of the correct length.

5.5.4 VmbFeatureListSelected()
List all the features selected by a given feature for this module.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbFeatureInfo_t* pFeatureInfoList An array of VmbFeatureInfo_t to be filled by the
API. May be NULL if pNumFound is used for size
query.

in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found.
May be NULL if pFeatureInfoList is not NULL.

in VmbUint32_t sizeofFeatureInfo Size of a VmbFeatureInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size is not valid for this version of the API
• VmbErrorMoreData: The given list length was insufficient to hold all available entries

Vimba C Manual 1.9.1 54

.
.

.
5 FuncƟon reference

This method lists all selected features, whether they are currently available or
not. Features with selected features ("selectors") have no direct impact on the
camera, but only influence the register address that selected features point to.
The list of features does not change while the camera/interface is connected.
This function is usually called twice: once with an empty array to query the
length of the list, and then again with an array of the correct length.

5.5.5 VmbFeatureAccessQuery()
Return the dynamic read and write capabilities of this feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features.

in const char * name Name of the feature.

out VmbBool_t * pIsReadable Indicates if this feature is readable. May be NULL.

out VmbBool_t * pIsWriteable Indicates if this feature is writable. May be NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "pIsReadable" and "pIsWriteable" were both NULL
• VmbErrorNotFound: The feature was not found

The access mode of a feature may change. For example, if "PacketSize" is locked
while image data is streamed, it is only readable.

Vimba C Manual 1.9.1 55

.
.

.
5 FuncƟon reference

5.6 Integer
5.6.1 VmbFeatureIntGet()
Get the value of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbInt64_t* pValue Value to get

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

5.6.2 VmbFeatureIntSet()
Set the value of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in VmbInt64_t value Value to set

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorInvalidValue: If "value" is either out of bounds or not an increment of the minimum
• VmbErrorBadParameter: If "name" is NULL

Vimba C Manual 1.9.1 56

.
.

.
5 FuncƟon reference

• VmbErrorNotFound: If the feature was not found
• VmbErrorInvalidCall: If called from frame callback

5.6.3 VmbFeatureIntRangeQuery()
Query the range of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbInt64_t* pMin Minimum value to be returned. May be NULL.

out VmbInt64_t* pMax Maximum value to be returned. May be NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "name" is NULL or "pMin" and "pMax" are NULL
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: If the feature was not found

5.6.4 VmbFeatureIntIncrementQuery()
Query the increment of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbInt64_t* pValue Value of the increment to get.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Vimba C Manual 1.9.1 57

.
.

.
5 FuncƟon reference

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

Vimba C Manual 1.9.1 58

.
.

.
5 FuncƟon reference

5.7 Float
5.7.1 VmbFeatureFloatGet()
Get the value of a float feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out double* pValue Value to get

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Float
• VmbErrorBadParameter: If "name" or "pValue" is NULL
• VmbErrorNotFound: The feature was not found

5.7.2 VmbFeatureFloatSet()
Set the value of a float feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in double value Value to set

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Float
• VmbErrorInvalidValue: If "value" is not within valid bounds
• VmbErrorNotFound: The feature was not found

Vimba C Manual 1.9.1 59

.
.

.
5 FuncƟon reference

• VmbErrorBadParameter: If "name" is NULL
• VmbErrorInvalidCall: If called from frame callback

5.7.3 VmbFeatureFloatRangeQuery()
Query the range of a float feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out double* pMin Minimum value to be returned. May be NULL.

out double* pMax Maximum value to be returned. May be NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Float
• VmbErrorNotFound: The feature was not found
• VmbBadParameter: If "name" is NULL or "pMin" and "pMax" are NULL

Only one of the values may be queried if the other parameter is set to NULL, but
if both parameters are NULL, an error is returned.

5.7.4 VmbFeatureFloatIncrementQuery()
Query the increment of an float feature.

Vimba C Manual 1.9.1 60

.
.

.
5 FuncƟon reference

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbBool_t * pHasIncrement "true" if this float feature has an increment.

out double* pValue Value of the increment to get.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

Vimba C Manual 1.9.1 61

.
.

.
5 FuncƟon reference

5.8 Enum
5.8.1 VmbFeatureEnumGet()
Get the value of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out const char** pValue The current enumeration value. The returned value is a ref-
erence to the API value

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

5.8.2 VmbFeatureEnumSet()
Set the value of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in const char* value Value to set

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration

Vimba C Manual 1.9.1 62

.
.

.
5 FuncƟon reference

• VmbErrorInvalidValue: If "value" is not within valid bounds
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" ore "value" is NULL
• VmbErrorInvalidCall: If called from frame callback

5.8.3 VmbFeatureEnumRangeQuery()
Query the value range of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out const char** pNameArray An array of enumeration value names; may be NULL if
pNumFilled is used for size query

in VmbUint32_t arrayLength Number of elements in the array

out VmbUint32_t * pNumFilled Number of filled elements; may beNULL if pNameArray
is not NULL

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorMoreData: The given array length was insufficient to hold all available entries
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" is NULL or "pNameArray" and "pNumFilled" are NULL

5.8.4 VmbFeatureEnumIsAvailable()
Check if a certain value of an enumeration is available.

Vimba C Manual 1.9.1 63

.
.

.
5 FuncƟon reference

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in const char* value Value to check

out VmbBool_t * pIsAvailable Indicates if the given enumeration value is available

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "value" or "pIsAvailable" is NULL

5.8.5 VmbFeatureEnumAsInt()
Get the integer value for a given enumeration string value.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in const char* value The enumeration value to get the integer value for

out VmbInt64_t* pIntVal The integer value for this enumeration entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "value" or "pIntVal" is NULL

Converts a name of an enum member into an int value ("Mono12Packed" to
0x10C0006)

Vimba C Manual 1.9.1 64

.
.

.
5 FuncƟon reference

5.8.6 VmbFeatureEnumAsString()
Get the enumeration string value for a given integer value.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in VmbInt64_t intValue The numeric value

out const char** pStringValue The string value for the numeric value

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pStringValue" is NULL

Converts an int value to a name of an enum member (e.g. 0x10C0006 to
"Mono12Packed")

5.8.7 VmbFeatureEnumEntryGet()
Get infos about an entry of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes
features

in const char* featureName Name of the feature

in const char* entryName Name of the enum entry of that fea-
ture

out VmbFeatureEnumEntry_t* pFeatureEnumEntry Infos about that entry returned by
the API

in VmbUint32_t sizeofFeatureEnumEntry Size of the structure

Vimba C Manual 1.9.1 65

.
.

.
5 FuncƟon reference

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize Size of VmbFeatureEnumEntry_t is not compatible with the API version
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "featureName" or "entryName" or "pFeatureEnumEntry" is NULL

Vimba C Manual 1.9.1 66

.
.

.
5 FuncƟon reference

5.9 String
5.9.1 VmbFeatureStringGet()
Get the value of a string feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the string feature

out char* buffer String buffer to fill. May be NULL if pSizeFilled is used for
size query.

in VmbUint32_t bufferSize Size of the input buffer

out VmbUint32_t* pSizeFilled Size actually filled. May be NULL if buffer is not NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorMoreData: The given buffer size was too small
• VmbErrorNotFound: The feature was not found
• VmbErrorWrongType: The type of feature "name" is not String

This function is usually called twice: once with an empty buffer to query the
length of the string, and then again with a buffer of the correct length.

5.9.2 VmbFeatureStringSet()
Set the value of a string feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the string feature

in const char* value Value to set

Vimba C Manual 1.9.1 67

.
.

.
5 FuncƟon reference

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorNotFound: The feature was not found
• VmbErrorWrongType: The type of feature "name" is not String
• VmbErrorInvalidValue: If length of "value" exceeded the maximum length
• VmbErrorBadParameter: If "name" or "value" is NULL
• VmbErrorInvalidCall: If called from frame callback

5.9.3 VmbFeatureStringMaxlengthQuery()
Get the maximum length of a string feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the string feature

out VmbUint32_t* pMaxLength Maximum length of this string feature

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not String
• VmbErrorBadParameter: If "name" or "pMaxLength" is NULL

Vimba C Manual 1.9.1 68

.
.

.
5 FuncƟon reference

5.10 Boolean
5.10.1 VmbFeatureBoolGet()
Get the value of a boolean feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the boolean feature

out VmbBool_t * pValue Value to be read

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Boolean
• VmbErrorNotFound: If feature is not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

5.10.2 VmbFeatureBoolSet()
Set the value of a boolean feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the boolean feature

in VmbBool_t value Value to write

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Boolean
• VmbErrorInvalidValue: If "value" is not within valid bounds
• VmbErrorNotFound: If the feature is not found

Vimba C Manual 1.9.1 69

.
.

.
5 FuncƟon reference

• VmbErrorBadParameter: If "name" is NULL
• VmbErrorInvalidCall: If called from frame callback

Vimba C Manual 1.9.1 70

.
.

.
5 FuncƟon reference

5.11 Command
5.11.1 VmbFeatureCommandRun()
Run a feature command.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the command feature

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Command
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" is NULL

5.11.2 VmbFeatureCommandIsDone()
Check if a feature command is done.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the command feature

out VmbBool_t * pIsDone State of the command.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Command
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" or "pIsDone" is NULL

Vimba C Manual 1.9.1 71

.
.

.
5 FuncƟon reference

5.12 Raw
5.12.1 VmbFeatureRawGet()
Read the memory contents of an area given by a feature name.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the raw feature

out char* pBuffer Buffer to fill

in VmbUint32_t bufferSize Size of the buffer to be filled

out VmbUint32_t* pSizeFilled Number of bytes actually filled

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Register
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" or "pBuffer" or "pSizeFilled" is NULL

This feature type corresponds to a top-level "Register" feature in GenICam. Data
transfer is split up by the transport layer if the feature length is too large. You
can get the size of the memory area addressed by the feature "name" by
VmbFeatureRawLengthQuery().

5.12.2 VmbFeatureRawSet()
Write to a memory area given by a feature name.

Vimba C Manual 1.9.1 72

.
.

.
5 FuncƟon reference

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the raw feature

in const char* pBuffer Data buffer to use

in VmbUint32_t bufferSize Size of the buffer

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Register
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" or "pBuffer" is NULL
• VmbErrorInvalidCall: If called from frame callback

This feature type corresponds to a first-level "Register" node in the XML file.
Data transfer is split up by the transport layer if the feature length is too large.
You can get the size of the memory area addressed by the feature "name" by
VmbFeatureRawLengthQuery().

5.12.3 VmbFeatureRawLengthQuery()
Get the length of a raw feature for memory transfers.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the raw feature

out VmbUint32_t* pLength Length of the raw feature area (in bytes)

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Register
• VmbErrorNotFound: Feature not found

Vimba C Manual 1.9.1 73

.
.

.
5 FuncƟon reference

• VmbErrorBadParameter: If "name" or "pLength" is NULL

This feature type corresponds to a first-level "Register" node in the XML file.

Vimba C Manual 1.9.1 74

.
.

.
5 FuncƟon reference

5.13 Feature invalidaƟon
5.13.1 VmbFeatureInvalidaƟonRegister()
Register a VmbInvalidationCallback callback for feature invalidation signaling.

Type Name Description

in const VmbHandle_t handle Handle for an entity that emits events

in const char* name Name of the event

in VmbInvalidationCallback callback Callback to be run, when invalidation occurs

in void* pUserContext User context passed to function

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

Any feature change, either of its value or of its access state, may be tracked by
registering an invalidation callback. Registering multiple callbacks for one
feature invalidation event is possible because only the combination of handle,
name, and callback is used as key. If the same combination of handle, name,
and callback is registered a second time, it overwrites the previous one.

5.13.2 VmbFeatureInvalidaƟonUnregister()
Unregister a previously registered feature invalidation callback.

Type Name Description

in const VmbHandle_t handle Handle for an entity that emits events

in const char* name Name of the event

in VmbInvalidationCallback callback Callback to be removed

• VmbErrorSuccess: If no error

Vimba C Manual 1.9.1 75

.
.

.
5 FuncƟon reference

• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

Since multiple callbacks may be registered for a feature invalidation event, a
combination of handle, name, and callback is needed for unregistering, too.

Vimba C Manual 1.9.1 76

.
.

.
5 FuncƟon reference

5.14 Image preparaƟon and acquisiƟon
5.14.1 VmbFrameAnnounce()
Announce frames to the API that may be queued for frame capturing later.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

in const VmbFrame_t* pFrame Frame buffer to announce

in VmbUint32_t sizeofFrame Size of the frame structure

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given camera handle is not valid
• VmbErrorBadParameter: The given frame pointer is not valid or "sizeofFrame" is 0
• VmbErrorStructSize: The given struct size is not valid for this version of the API

Allows some preparation for frames like DMA preparation depending on the
transport layer. The order in which the frames are announced is not taken into
consideration by the API. The method can be used to annouce a previously
allocated frame buffer to the transport layer. Alternatively, in case
"pFrame->buffer" points to NULL, the method will allocate and announce a new
buffer. In this case "pFrame->buffer" contains the allocated buffer address on
return.

5.14.2 VmbFrameRevoke()
Revoke a frame from the API.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

in const VmbFrame_t* pFrame Frame buffer to be removed from the list of announced
frames

• VmbErrorSuccess: If no error

Vimba C Manual 1.9.1 77

.
.

.
5 FuncƟon reference

• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given camera handle is not valid
• VmbErrorBadParameter: The given frame pointer is not valid
• VmbErrorStructSize: The given struct size is not valid for this version of the API

The referenced frame is removed from the pool of frames for capturing images.

5.14.3 VmbFrameRevokeAll()
Revoke all frames assigned to a certain camera.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given camera handle is not valid

5.14.4 VmbCaptureStart()
Prepare the API for incoming frames.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorDeviceNotOpen: Camera was not opened for usage
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

Vimba C Manual 1.9.1 78

.
.

.
5 FuncƟon reference

5.14.5 VmbCaptureEnd()
Stop the API from being able to receive frames.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

Consequences of VmbCaptureEnd(): - The frame callback will not be called
anymore

5.14.6 VmbCaptureFrameQueue()
Queue frames that may be filled during frame capturing.

Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera

in const VmbFrame_t* pFrame Pointer to an already announced frame

in VmbFrameCallback callback Callback to be run when the frame is complete. NULL
is Ok.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given frame is not valid
• VmbErrorStructSize: The given struct size is not valid for this version of the API

The given frame is put into a queue that will be filled sequentially. The order in
which the frames are filled is determined by the order in which they are
queued. If the frame was announced with VmbFrameAnnounce() before, the
application has to ensure that the frame is also revoked by calling
VmbFrameRevoke() or VmbFrameRevokeAll() when cleaning up.

Vimba C Manual 1.9.1 79

.
.

.
5 FuncƟon reference

5.14.7 VmbCaptureFrameWait()
Wait for a queued frame to be filled (or dequeued).

Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera

in const VmbFrame_t* pFrame Pointer to an already announced & queued frame

in VmbUint32_t timeout Timeout (in milliseconds)

• VmbErrorSuccess: If no error
• VmbErrorTimeout: Call timed out
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

5.14.8 VmbCaptureQueueFlush()
Flush the capture queue.

Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera to flush

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

Control of all the currently queued frames will be returned to the user, leaving
no frames in the capture queue. After this call, no frame notification will occur
until frames are queued again.

Vimba C Manual 1.9.1 80

.
.

.
5 FuncƟon reference

5.15 Interface EnumeraƟon & InformaƟon
5.15.1 VmbInterfacesList()
List all the interfaces currently visible to VimbaC.

Type Name Description

out VmbInterfaceInfo_t* pInterfaceInfo Array of VmbInterfaceInfo_t, allocated by the
caller. The interface list is copied here. May be
NULL.

in VmbUint32_t listLength Number of entries in the caller's pList array

out VmbUint32_t* pNumFound Number of interfaces found (may be more
than listLength!) returned here.

in VmbUint32_t sizeofInterfaceInfo Size of one VmbInterfaceInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: The given list length was insufficient to hold all available entries
• VmbErrorBadParameter: If "pNumFound" was NULL

All the interfaces known via GenICam TransportLayers are listed by this
command and filled into the provided array. Interfaces may correspond to
adapter cards or frame grabber cards or, in the case of FireWire to the whole
1394 infrastructure, for instance. This function is usually called twice: once with
an empty array to query the length of the list, and then again with an array of
the correct length.

5.15.2 VmbInterfaceOpen()
Open an interface handle for feature access.

Type Name Description

in const char* idString The ID of the interface to get the handle for (returned by
VmbInterfacesList())

out VmbHandle_t* pInterfaceHandle The handle for this interface.

Vimba C Manual 1.9.1 81

.
.

.
5 FuncƟon reference

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated interface cannot be found
• VmbErrorBadParameter: If "pInterfaceHandle" was NULL

An interface can be opened if interface-specific control or information is
required, e.g. the number of devices attached to a specific interface. Access is
then possible via feature access methods.

5.15.3 VmbInterfaceClose()
Close an interface.

Type Name Description

in const VmbHandle_t interfaceHandle The handle of the interface to close.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

After configuration of the interface, close it by calling this function.

Vimba C Manual 1.9.1 82

.
.

.
5 FuncƟon reference

5.16 Ancillary data
5.16.1 VmbAncillaryDataOpen()
Get a working handle to allow access to the elements of the ancillary data via feature access.

Type Name Description

in VmbFrame_t* pFrame Pointer to a filled frame

out VmbHandle_t* pAncillaryDataHandle Handle to the ancillary data inside the frame

• VmbErrorSuccess: No error
• VmbErrorBadHandle: Chunk mode of the camera was not activated. See feature

ChunkModeActive
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

This function can only succeed if the given frame has been filled by the API.

5.16.2 VmbAncillaryDataClose()
Destroy the working handle to the ancillary data inside a frame.

Type Name Description

in VmbHandle_t ancillaryDataHandle Handle to ancillary frame data

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

After reading the ancillary data and before re-queuing the frame, ancillary data
must be closed.

Vimba C Manual 1.9.1 83

.
.

.
5 FuncƟon reference

5.17 Memory/Register access
5.17.1 VmbMemoryRead()
Read an array of bytes.

Type Name Description

in const VmbHandle_t handle Handle for an entity that allows memory access

in VmbUint64_t address Address to be used for this read operation

in VmbUint32_t bufferSize Size of the data buffer to read

out char* dataBuffer Buffer to be filled

out VmbUint32_t* pSizeComplete Size of the data actually read

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

5.17.2 VmbMemoryWrite()
Write an array of bytes.

Type Name Description

in const VmbHandle_t handle Handle for an entity that allows memory access

in VmbUint64_t address Address to be used for this read operation

in VmbUint32_t bufferSize Size of the data buffer to write

in const char* dataBuffer Data to write

out VmbUint32_t* pSizeComplete Number of bytes successfully written; if an error oc-
curs this is less than bufferSize

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Vimba C Manual 1.9.1 84

.
.

.
5 FuncƟon reference

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorMoreData: Not all data were written; see pSizeComplete value for the number of bytes

written

5.17.3 VmbRegistersRead()
Read an array of registers.

Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register ac-
cess

in VmbUint32_t readCount Number of registers to be read

in const VmbUint64_t* pAddressArray Array of addresses to be used for this read
operation

out VmbUint64_t* pDataArray Array of registers to be used for this read op-
eration

out VmbUint32_t* pNumCompleteReads Number of reads completed

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorIncomplete: Not all the requested reads could be completed

Two arrays of data must be provided: an array of register addresses and one for
corresponding values to be read. The registers are read consecutively until an
error occurs or all registers are written successfully.

5.17.4 VmbRegistersWrite()
Write an array of registers.

Vimba C Manual 1.9.1 85

.
.

.
5 FuncƟon reference

Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register ac-
cess

in VmbUint32_t writeCount Number of registers to be written

in const VmbUint64_t* pAddressArray Array of addresses to be used for this write
operation

in const VmbUint64_t* pDataArray Array of reads to be used for this write op-
eration

out VmbUint32_t* pNumCompleteWrites Number of writes completed

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorIncomplete: Not all the requested writes could be completed

Two arrays of data must be provided: an array of register addresses and one
with the corresponding values to be written to these addresses. The registers
are written consecutively until an error occurs or all registers are written
successfully.

5.17.5 VmbCameraSeƫngsSave()
Saves all feature values to XML file.

Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register
access

in const char* fileName Name of XML file to save settings

in VmbFeaturePersistSettings_t* pSettings Settings struct

in VmbUint32_t sizeofSettings Size of settings struct

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Vimba C Manual 1.9.1 86

.
.

.
5 FuncƟon reference

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "fileName" is NULL

Camera must be opened beforehand and function needs corresponding handle.
With given filename parameter path and name of XML file can be determined.
Additionally behaviour of function can be set with providing 'persistent struct'.

5.17.6 VmbCameraSeƫngsLoad()
Load all feature values from XML file to device.

Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register
access

in const char* fileName Name of XML file to save settings

in VmbFeaturePersistSettings_t* pSettings Settings struct

in VmbUint32_t sizeofSettings Size of settings struct

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "fileName" is NULL

Camera must be opened beforehand and function needs corresponding handle.
With given filename parameter path and name of XML file can be determined.
Additionally behaviour of function can be set with providing 'settings struct'.

Vimba C Manual 1.9.1 87

	Contacting Allied Vision
	Document history and conventions
	Document history
	Conventions used in this manual
	Styles
	Symbols

	General aspects of the API
	API usage
	API Version
	API Startup and Shutdown
	Listing available cameras
	Opening and closing a camera
	Accessing Features
	Image Capture (API) and Acquisition (Camera)
	Image Capture and Image Acquisition
	Image Capture
	Image Acquisition

	Using Events
	Saving and loading settings
	Triggering cameras
	External trigger
	Trigger over Ethernet – Action Commands

	Additional configuration: Listing Interfaces
	Troubleshooting
	GigE cameras
	USB cameras
	Goldeye CL cameras
	CSI-2 cameras

	Error Codes

	Function reference
	Callbacks
	API Version
	API Initialization
	Camera Enumeration & Information
	Features
	Integer
	Float
	Enum
	String
	Boolean
	Command
	Raw
	Feature invalidation
	 Image preparation and acquisition
	Interface Enumeration & Information
	Ancillary data
	Memory/Register access

