
...

.

.

Vimba

.

Vimba Python Manual

.

1.2.1

..

Vimba Python Manual 1.2.1

.

December 2021

.
.

.
Legal NoƟce

Legal Notice
Trademarks
Unless stated otherwise, all trademarks appearing in this document are brands protected by law.

Warranty
The information provided by Allied Vision is supplied without any guarantees or warranty whatsoever,
be it specific or implicit. Also excluded are all implicit warranties concerning the negotiability, the
suitability for specific applications or the non-breaking of laws and patents. Even if we assume that the
information supplied to us is accurate, errors and inaccuracy may still occur.

Copyright
All texts, pictures and graphics are protected by copyright and other laws protecting intellectual
property.

All rights reserved.

Headquarters:
Allied Vision Technologies GmbH
Taschenweg 2a
D-07646 Stadtroda, Germany
Tel.: +49 (0)36428 6770
Fax: +49 (0)36428 677-28
e-mail: info@alliedvision.com

Vimba Python Manual 1.2.1 2

mailto:info@alliedvision.com

.
.

.
Contents

Contents
1 Contacting Allied Vision 5

2 Document history and conventions 6
2.1 Document history . 7
2.2 Conventions used in this manual . 7

2.2.1 Styles . 7
2.2.2 Symbols . 8

3 Purpose and scope of the API 9
3.1 Compatibility . 10
3.2 Prerequisites . 10

3.2.1 Installing Python - Windows . 10
3.2.2 Installing Python - Linux . 10
3.2.3 All operating systems . 11

4 Introduction to the API 12
4.1 General aspects of the API . 12
4.2 Classes . 12

5 API usage 14
5.1 Listing cameras . 14
5.2 Listing features . 14
5.3 Accessing features . 15
5.4 Acquiring images . 15
5.5 Changing the pixel format . 16
5.6 Listing ancillary data . 17
5.7 Loading and saving user sets . 18
5.8 Loading and saving settings . 18
5.9 Handling events . 18
5.10 Software trigger . 18
5.11 Trigger over Ethernet - Action Commands . 19
5.12 Multithreading . 20

6 Migrating to the Vimba C or C++ API 21

7 Troubleshooting 22
7.1 Camera settings . 22

7.1.1 GigE cameras . 22
7.1.2 USB cameras . 22
7.1.3 Goldeye CL cameras . 22

Vimba Python Manual 1.2.1 3

.
.

.
Contents

7.1.4 CSI-2 cameras . 22
7.2 Logging . 23

7.2.1 Logging levels . 23
7.3 Other issues . 24

Vimba Python Manual 1.2.1 4

.
.

.
1 ContacƟng Allied Vision

1 Contacting Allied Vision

Contact information on our website
https://www.alliedvision.com/en/meta-header/contact-us

Find an Allied Vision office or distributor
https://www.alliedvision.com/en/about-us/where-we-are

Email
info@alliedvision.com
support@alliedvision.com

Sales Offices
EMEA: +49 36428-677-230
North and South America: +1 978 225 2030
California: +1 408 721 1965
Asia-Pacific: +65 6634-9027
China: +86 (21) 64861133

Headquarters
Allied Vision Technologies GmbH
Taschenweg 2a
07646 Stadtroda
Germany

Tel: +49 (0)36428 677-0
Fax: +49 (0)36428 677-28

Vimba Python Manual 1.2.1 5

https://www.alliedvision.com/en/meta-header/contact-us
https://www.alliedvision.com/en/about-us/where-we-are
mailto:info@alliedvision.com
mailto:support@alliedvision.com

...

2 Documenthistoryandconventions
..

This chapter includes:

.

2.1 Document history . 7
2.2 ConvenƟons used in this manual 7

2.2.1 Styles . 7
2.2.2 Symbols . 8

Vimba Python Manual 1.2.1 6

.
.

.
2 Document history and convenƟons

2.1 Document history
Version Date Changes

0.1.0 November 2019 Beta release version for customer feedback

0.2.1 January 2020 Improved beta release

1.0.0 May 2020 New release

1.0.1 October 2020 Added compatibility with latest Vimba version, improved install.sh

1.1.0 December 2020 Added compatibility with latest VimbaC version, minor bug fix

1.2.0 October 2021 Added optional "alloc and announce" functionality, added installation
tips

1.2.1 December 2021 Added CSI-2

2.2 ConvenƟons used in this manual
To give this manual an easily understood layout and to emphasize important information, the following
typographical styles and symbols are used:

2.2.1 Styles

Style Function Example

Emphasis Programs, or highlighting important things Emphasis

Publication title Publication titles Title

Web reference Links to web pages Link

Document reference Links to other documents Document

Output Outputs from software GUI Output

Input Input commands, modes Input

Feature Feature names Feature

Vimba Python Manual 1.2.1 7

.
.

.
2 Document history and convenƟons

2.2.2 Symbols

Practical Tip

Safety-related instructions to avoid malfunctions
Instructions to avoid malfunctions

i Further information available online

Vimba Python Manual 1.2.1 8

.
.

.
3 Purpose and scope of the API

3 Purpose and scope of the API
Vimba's Python API is a Python Wrapper around the Vimba C API. It provides all functions from the
Vimba C API, but enables you to program Allied Vision cameras with less lines of code.
We recommend using the Vimba Python API for:

• Quick prototyping
• Getting started with programming machine vision or embedded vision applications
• Easy interfacing with deep learning frameworks and libraries such as OpenCV via NumPy arrays

Is this the best API for you?
Vimba provides four APIs:

• The Vimba Python API is ideal for quick prototyping. We also recommend this API for an easy start
with machine vision or embedded vision applications. For best performance and deterministic
behavior, the C and C++ APIs are a better choice.

• The Vimba C API is easy-to-use, but requires more lines of code than the Python API. It can also be
used as API for C++ applications.

• The Vimba C++ API has an elaborate class architecture. It is designed as a highly efficient and
sophisticated API for advanced object-oriented programming including the STL (standard template
library), shared pointers, and interface classes. If you prefer an API with less design patterns, we
recommend the Vimba C API.

• The Vimba .NET API supports all .NET languages. Its general concept is similar to the C++ API.

All Vimba APIs cover the following functions:

• Listing currently connected cameras
• Controlling camera features
• Receiving images from the camera
• Getting notifications about camera connections and disconnections

Vimba Python Manual 1.2.1 9

.
.

.
3 Purpose and scope of the API

3.1 CompaƟbility
Compatible Python version
Python 3.7.x or higher. For 64-bit operating systems, we recommend using a 64-bit Python interpreter.

3.2 Prerequisites
To use Vimba Python API, you need Python version 3.7 or higher.

3.2.1 Installing Python - Windows
If your system requires multiple, coexisting Python versions, consider using pyenv-win, available at
https://github.com/pyenv-win/pyenv-win to install and maintain multiple Python installations.

1. Download the latest Python release from python.org, available at
https://www.python.org/downloads/windows/.

2. Execute the downloaded installer. If pip higher than 21.2 is used, read the instructions for all
operating systems below.

3. To verify the installation, open the command prompt and enter:
python --version
python -m pip --version

Please ensure that the Python version is 3.7 or higher and pip uses this Python version.
Optionally, install NumPy and OpenCV.

3.2.2 Installing Python - Linux
On Linux systems, the Python installation process depends heavily on the distribution. If python3.7 is
not available for your distribution or your system requires multiple python versions to coexist, use
pyenv, available at https://realpython.com/intro-to-pyenv/ instead.
If you don't have admin privileges for all directories, read the instructions for all operating systems
below.

1. Install or update python 3.7 with the packet manager of your distribution.
2. Install or update pip with the packet manager of your distribution.
3. To verify the installation, open a console and enter:

python --version
python -m pip --version

Vimba Python Manual 1.2.1 10

.
.

.
3 Purpose and scope of the API

Helper scripts for Linux
For Linux systems, helper scripts named Install.sh and Uninstall.sh to install and uninstall
VimbaPython are provided. They automatically detect if there is a currently active virtual environment.
To install or uninstall VimbaPython for one of the system wide Python installations, admin rights are
required (use sudo). To get further details on why the scripts do not offer your desired Python
installation or to troubleshoot problems, a debug flag is provided (for example ./Install.sh -d).
ARM users only: If installation of "opencv-export" fails, pip is not able to install "opencv-python" for
ARM boards. This is a known issue on ARM boards. If you are affected by this, install VimbaPython
without optional dependencies and try to install OpenCV in a different way (for example, with your
operating system's packet manager). The OpenCV installation can be verified by running the example
asychronous_ grab_ opencv.py.

3.2.3 All operaƟng systems
Open a terminal and navigate to the VimbaPython installation directory that you have admin/write
privileges for, such as C:\Users\Public\Documents\Allied Vision\Vimba_x.x\VimbaPython_Source.
Users who want to change the API's sources can find them in the Vimba examples directory (see above).
Please note that Allied Vision can offer only limited support if an application uses a modified version of
the API.
Troubleshooting: If you don't have admin rights for the above-mentioned directories, download
VimbaPython (in the correct version needed for your Vimba installation) from
https://github.com/alliedvision/VimbaPython and install it from that directory. Or downgrade pip to a
version less than 2.3 with, for example:
python -m pip install --upgrade pip==21.1.2
After the VimbaPython installation is complete, you can upgrade pip again to the latest version.
For a basic Python installation, execute:
python -m pip install .

Installation with optional NumPy and OpenCV export:
python -m pip install .[numpy-export,opencv-export]

Vimba Python Manual 1.2.1 11

.
.

.
4 IntroducƟon to the API

4 Introduction to the API
4.1 General aspects of the API
Entry point
The entry point of VimbaPython is the Vimba singleton representing the underlying Vimba System.

Entity documentation
All entities of the Vimba Python API are documented via docstring.

Context manager
The Vimba singleton implements a context manager. The context entry initializes:

• System features discovery
• Interface detection
• Camera detection

The context entry always handles:

• Vimba API startup and shutdown
• Opening and closing cameras, interfaces, and ancillary data
• Feature discovery for the opened entity

Always call all methods for Camera, Feature, and Interface within the scope of a with statement:

from vimba import *
with Vimba.get_instance() as vimba:

cams = vimba.get_all_cameras()

4.2 Classes
Camera
The Camera class implements a context manager. On entering the Camera's context, all camera features
are detected and can be accessed only within the with statement. Additionally to getting and setting
camera features, the Camera class handles the camera access mode (default: Full Access). For changing
the pixel format, always use the convenience functions instead of the camera feature, see section
Changing the pixel format.

Frame
The Frame class stores raw image data and metadata of a single frame. The Frame class implements
deepcopy semantics. Additionally, it provides methods for pixel format conversion and ancillary data

Vimba Python Manual 1.2.1 12

.
.

.
4 IntroducƟon to the API

access. Like all objects containing Features, AncillaryData implements a context manager that must be
entered before features can be accessed. The Frame class offers methods for NumPy and OpenCV
export.

The following code snippet shows how to:
• Acquire a single frame
• Convert the pixel format to Mono8
• Store it using opencv-python

import cv2
from vimba import *

with Vimba.get_instance() as vimba:
cams = vimba.get_all_cameras()
with cams[0] as cam:

frame = cam.get_frame()
frame.convert_pixel_format(PixelFormat.Mono8)
cv2.imwrite('frame.jpg', frame.as_opencv_image())

Interface
The Interface class contains all data of detected hardware interfaces cameras are connected to. An
Interface has associated features and implements a context manager as well. On context entry, all
features are detected and can be accessed within the with statement scope. The following code
snippet prints all features of the first detected Interface.

from vimba import *

with Vimba.get_instance() as vimba:
inters = vimba.get_all_interfaces()
with inters[0] as interface:

for feat in interface.get_all_features():
print(feat)

Vimba Python Manual 1.2.1 13

.
.

.
5 API usage

5 API usage
For a quick start, we recommend using the code examples.

5.1 LisƟng cameras
To list available cameras, see the list_ cameras.py example. Cameras are detected automatically on
context entry of the Vimba instance. The order in which detected cameras are listed is determined by
the order of camera discovery and therefore not deterministic. The discovery of GigE cameras may take
several seconds. Before opening cameras, camera objects contain all static details of a physical camera
that do not change throughout the object's lifetime such as the camera ID and the camera model.

Plug and play
Cameras and hardware interfaces such as USB can be detected at runtime by registering a callback at
the Vimba instance. The following code snippet registers a callable, creating a log message as soon as a
camera or an interface is connected or disconnected. It runs for 10 seconds waiting for changes of the
connected hardware.

The Camera Link specification doesn't support plug and play. In this case,
changes to the camera list cannot be detected while Vimba is running.

from time import sleep
from vimba import *

@ScopedLogEnable(LOG_CONFIG_INFO_CONSOLE_ONLY)
def print_device_id(dev, state):

msg = 'Device: {}, State: {}'.format(str(dev), str(state))
Log.get_instance().info(msg)

vimba = Vimba.get_instance()
vimba.register_camera_change_handler(print_device_id)
vimba.register_interface_change_handler(print_device_id)

with vimba:
sleep(10)

5.2 LisƟng features
To list the features of a camera and its physical interface, see the list_ features.py example.

Vimba Python Manual 1.2.1 14

.
.

.
5 API usage

5.3 Accessing features
As an example for reading and writing a feature, the following code snippet reads the current exposure
time and increases it. Depending on your camera model and camera firmware, feature naming may be
different.

from vimba import *

with Vimba.get_instance() as vimba:
cams = vimba.get_all_cameras()
with cams[0] as cam:

exposure_time = cam.ExposureTime

time = exposure_time.get()
inc = exposure_time.get_increment()

exposure_time.set(time + inc)

5.4 Acquiring images
The Camera class supports synchronous and asynchronous image acquisition. For high performance,
acquire frames asynchronously and keep the registered callable as short as possible.

The Vimba Manual, section Synchronous and asynchronous image acquisition,
provides background knowledge. The Vimba C API Manual, chapter Image
Capture (API) and Acquisition, provides detailed information about functions of
the underlying C API.

To activate "alloc and announce" (optional, for more efficient buffer allocation):
Use the optional parameter /x to overwrite allocation_ mode, see the
AsynchronousGrab example.

Synchronous grab
from vimba import *

with Vimba.get_instance() as vimba:
cams = vimba.get_all_cameras()
with cams[0] as cam:

Aquire single frame synchronously
frame = cam.get_frame()

Aquire 10 frames synchronously
for frame in cam.get_frame_generator(limit=10):

pass

Vimba Python Manual 1.2.1 15

.
.

.
5 API usage

Acquire frames asychronously by registering a callable being executed with each incoming frame:

Asynchronous grab
import time
from vimba import*

def frame_handler(cam, frame):
cam.queue_frame(frame)

with Vimba.get_instance() as vimba:
cams = vimba.get_all_cameras()
with cams[0] as cam:

cam.start_streaming(frame_handler)
time.sleep(5)
cam.stop_streaming()

The asynchronous_ grab.py example shows how to grab images and prints information about the
acquired frames to the console.
The asynchronous_ grab_ opencv.py example shows how to grab images. It runs for 5 seconds and
displays the images via OpenCV.

5.5 Changing the pixel format
Convenience functions
To easily change the pixel format with Vimba Python API, always use the convenience functions instead
of the PixelFormat feature of the Camera. The convenience function set_pixel_format(fmt)
changes the Camera pixel format by passing the desired member of the PixelFormat enum. When
using the PixelFormat feature (not recommended), a correctly pre-formatted string has to be used
instead.

Getting and setting pixel formats
Before image acquisition is started, you can get and set pixel formats within the Camera class:

Camera class methods for getting and setting pixel formats
Apply these methods before starting image acquisition

get_pixel_formats() # returns a tuple of all pixel formats supported by the camera
get_pixel_format() # returns the current pixel format
set_pixel_format(fmt) # enables you to set a new pixel format

The pixel format cannot be changed while the camera is acquiring images.

Vimba Python Manual 1.2.1 16

.
.

.
5 API usage

Converting a pixel format
After image acquisition in the camera, the Frame contains the pixel format of the camera. Now you can
convert the pixel format with the convert_ pixel_ format() method.

The following code snippet shows how to query a pixel format and apply it to the camera:

from vimba import *

with Vimba.get_instance() as vimba:
cams = vimba.get_all_cameras()
with cams[0] as cam:

Get pixel formats available in the camera
fmts = cam.get_pixel_formats()

In this case, we want a format that supports colors
fmts = intersect_pixel_formats(fmts, COLOR_PIXEL_FORMATS)

In this case, we want a format that is compatible with OpenCV
fmts = intersect_pixel_formats(fmts, OPENCV_PIXEL_FORMATS)

if fmts:
cam.set_pixel_format(fmts[0])

else:
print('Abort. No valid pixel format found.')

The following code snippet shows how to:

• Acquire a single frame
• Convert the pixel format to Mono with 8-bit depth
• Save the frame as JPG using opencv-python

import cv2
from vimba import *

with Vimba.get_instance() as vimba:
cams = vimba.get_all_cameras()
with cams[0] as cam:

frame = cam.get_frame()
frame.convert_pixel_format(PixelFormat.Mono8)
cv2.imwrite('frame.jpg', frame.as_opencv_image())

5.6 LisƟng ancillary data
The list_ ancillary_ data.py example shows how to list ancillary data such as the frame count or feature
values such as the exposure time.

Vimba Python Manual 1.2.1 17

.
.

.
5 API usage

5.7 Loading and saving user sets
To save the camera settings as a user set in the camera and load it, use the user_ set.py example.

5.8 Loading and saving seƫngs
Additionally to the user sets stored in the camera, you can save the feature values as an XML file to your
host PC. For example, you can configure your camera with Vimba Viewer, save the settings, and load
them with any Vimba API. To do this, use the load_ save_ settings.py example.

5.9 Handling events
To get notifications about feature changes, use the event_ handling.py example (for GigE cameras only).

5.10 SoŌware trigger
Software trigger commands are supported by all Allied Vision cameras. To get started with triggering
and explore the possibilities, you can use Vimba Viewer. To program a software trigger application, use
the following code snippet.

Vimba Python Manual 1.2.1 18

.
.

.
5 API usage

Software trigger for continuous image acquisition

import time
from vimba import *

def handler(cam, frame):
print('Frame acquired: {}'.format(frame), flush=True)
cam.queue_frame(frame)

def main():
with Vimba.get_instance() as vimba:

cam = vimba.get_all_cameras()[0]

with cam:
cam.TriggerSource.set('Software')
cam.TriggerSelector.set('FrameStart')
cam.TriggerMode.set('On')
cam.AcquisitionMode.set('Continuous')

try:
cam.start_streaming(handler)

time.sleep(1)
cam.TriggerSoftware.run()

time.sleep(1)
cam.TriggerSoftware.run()

time.sleep(1)
cam.TriggerSoftware.run()

finally:
cam.stop_streaming()

if __name__ == '__main__':
main()

5.11 Trigger over Ethernet - AcƟon
Commands

Selected GigE cameras with the latest firmware support Action Commands. With Action Commands,
you can broadcast a trigger signal simultaneously to multiple GigE cameras via GigE cable. Action
Commands must be set first to the camera(s) and then to the API, which sends the Action Commands to
the camera(s). To learn more about Action Commands, see the action_ commands.py example and read
the application note Trigger over Ethernet - Action Commands.

Vimba Python Manual 1.2.1 19

https://alliedvision.com/fileadmin/content/documents/products/cameras/various/appnote/GigE/Action-Commands_Appnote.pdf

.
.

.
5 API usage

5.12 MulƟthreading
To get started with multithreading, use the multithreading_ opencv.py example. You can use the
example with one or multiple cameras. The FrameConsumer thread displays images of the first
detected camera via OpenCV in a window of 480 x 480 pixels, independent of the camera's image size.
The example automatically constructs, starts, and stops FrameProducer threads for each connected or
disconnected camera.

Vimba Python Manual 1.2.1 20

.
.

.
6 MigraƟng to the Vimba C or C++ API

6 Migrating to the Vimba C or C++
API

The Vimba Python API is optimized for quick and easy prototyping. To migrate to the Vimba C API, we
recommend using Vimba Python's extensive logging capabilities. In the log file, the order of operations
is the same as in the Vimba C API. Migrating to the Vimba C++ API is eased by similar names of the
functions.

Vimba Python Manual 1.2.1 21

.
.

.
7 TroubleshooƟng

7 Troubleshooting
7.1 Camera seƫngs
7.1.1 GigE cameras
Make sure to set the PacketSize feature of GigE cameras to a value supported by your network card. If
you use more than one camera on one interface, the available bandwidth has to be shared between the
cameras.
• GVSPAdjustPacketSize configures GigE cameras to use the largest possible packets.
• DeviceThroughputLimit (or StreamBytesPerSecond) configure the individual bandwidth if multiple

cameras are used.
• The maximum packet size might not be available on all connected cameras. Try to reduce the

packet size.
More information:
The Technical Manual of your camera provides detailed information on how to configure your system.
https://www.alliedvision.com/en/support/technical-documentation.html

7.1.2 USB cameras
Under Windows, make sure the correct driver is applied. For more details, see Vimba Manual, chapter
Vimba Driver Installer.
To achieve best performance, see the technical manual of your USB camera, chapter Troubleshooting:
https://www.alliedvision.com/en/support/technical-documentation.html

7.1.3 Goldeye CL cameras
• The pixel format, all features affecting the image size, and DeviceTapGeometry must be identical in

Vimba and the frame grabber software.
• Make sure to select an image size supported by the frame grabber.
• The baud rate of the camera and the frame grabber must be identical.
• Vimba doesn't support image streaming with Goldeye CL cameras, but you can use Vimba to

configure the camera settings.

7.1.4 CSI-2 cameras
Visit https://github.com/alliedvision for information about limitations of your board or the driver.

Vimba Python Manual 1.2.1 22

https://www.alliedvision.com/en/support/technical-documentation.html
https://www.alliedvision.com/en/support/technical-documentation.html

.
.

.
7 TroubleshooƟng

7.2 Logging
You can enable and configure logging to:

• Create error reports
• Prepare the migration to the Vimba C API or the Vimba C++ API

If you want to send a log file to our Technical Support team, always use logging
level Trace.

7.2.1 Logging levels
The Vimba Python API offers several logging levels.
The following code snippet shows how to enable logging with level Warning. All messages are printed to
the console.

from vimba import *

vimba = Vimba.get_instance()
vimba.enable_log(LOG_CONFIG_WARNING_CONSOLE_ONLY)

log = Log.get_instance()
log.critical('Critical , visible')
log.error('Error, visible')
log.warning('Warning, visible')
log.info('Info, invisible')
log.trace('Trace, invisible')

vimba.disable_log()

Tracing
The logging level Trace enables the most detailed reports. Additionally, you can use it to prepare the
migration to the Vimba C API or the Vimba C++ API. Trace is always used with the TraceEnable()
decorator. The decorator adds a log entry of level Trace as soon as the decorated function is called. In
addition, a log message is added on function exit. This log message shows if the function exit occurred
as expected or with an exception.
To create a trace log file, use the create_ trace_ log.py example.

Vimba Python Manual 1.2.1 23

.
.

.
7 TroubleshooƟng

Avoiding large log files
All previous examples enable and disable logging globally via the Vimba object. For more complex
applications, this may cause large log files. The ScopedLogEnable() decorator allows enabling and
disabling logging on function entry and exit. The following code snippet shows how to use
TraceEnable() and ScopedLogEnable().
from vimba import *

@TraceEnable()
def traced_function():

Log.get_instance().info('Within Traced Function')

@ScopedLogEnable(LOG_CONFIG_TRACE_CONSOLE_ONLY)
def logged_function():

traced_function()

logged_function()

7.3 Other issues
• To use the Vimba Python API, the installation of a compatible Vimba C version and Vimba Image

Transform version is required. To check the versions, use vimba.get_ version().
• For the installation, see chapter Prerequisites.
• For changing the pixel format, always use the convenience functions instead of the camera feature,

see section Changing the pixel format.

Vimba Python Manual 1.2.1 24

	Contacting Allied Vision
	Document history and conventions
	Document history
	Conventions used in this manual
	Styles
	Symbols

	Purpose and scope of the API
	Compatibility
	Prerequisites
	Installing Python - Windows
	Installing Python - Linux
	All operating systems

	Introduction to the API
	General aspects of the API
	Classes

	API usage
	Listing cameras
	Listing features
	Accessing features
	Acquiring images
	Changing the pixel format
	Listing ancillary data
	Loading and saving user sets
	Loading and saving settings
	Handling events
	Software trigger
	Trigger over Ethernet - Action Commands
	Multithreading

	Migrating to the Vimba C or C++ API
	Troubleshooting
	Camera settings
	GigE cameras
	USB cameras
	Goldeye CL cameras
	CSI-2 cameras

	Logging
	Logging levels

	Other issues

