#ifndef _rknnPool_H #define _rknnPool_H #include #include #include #include "rga.h" #include "im2d.h" #include "RgaUtils.h" #include "rknn_api.h" #include "postprocess.h" #include "opencv2/core/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include "ThreadPool.hpp" using cv::Mat; using std::queue; using std::vector; static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz); static unsigned char *load_model(const char *filename, int *model_size); class rknn_lite { private: rknn_context rkModel; unsigned char *model_data; rknn_sdk_version version; rknn_input_output_num io_num; rknn_tensor_attr *input_attrs; rknn_tensor_attr *output_attrs; rknn_input inputs[1]; int ret; int channel = 3; int width = 0; int height = 0; public: Mat ori_img; int interf(); rknn_lite(char *dst, int n); ~rknn_lite(); }; rknn_lite::rknn_lite(char *model_name, int n) { /* Create the neural network */ printf("Loading mode...\n"); int model_data_size = 0; // 读取模型文件数据 model_data = load_model(model_name, &model_data_size); // 通过模型文件初始化rknn类 ret = rknn_init(&rkModel, model_data, model_data_size, 0, NULL); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); exit(-1); } // rknn_core_mask core_mask; if (n == 0) core_mask = RKNN_NPU_CORE_0; else if(n == 1) core_mask = RKNN_NPU_CORE_1; else core_mask = RKNN_NPU_CORE_2; int ret = rknn_set_core_mask(rkModel, core_mask); if (ret < 0) { printf("rknn_init core error ret=%d\n", ret); exit(-1); } // 初始化rknn类的版本 ret = rknn_query(rkModel, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version)); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); exit(-1); } // 获取模型的输入参数 ret = rknn_query(rkModel, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); exit(-1); } // 设置输入数组 input_attrs = new rknn_tensor_attr[io_num.n_input]; memset(input_attrs, 0, sizeof(input_attrs)); for (int i = 0; i < io_num.n_input; i++) { input_attrs[i].index = i; ret = rknn_query(rkModel, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); if (ret < 0) { printf("rknn_init error ret=%d\n", ret); exit(-1); } } // 设置输出数组 output_attrs = new rknn_tensor_attr[io_num.n_output]; memset(output_attrs, 0, sizeof(output_attrs) ); for (int i = 0; i < io_num.n_output; i++) { output_attrs[i].index = i; ret = rknn_query(rkModel, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); } // 设置输入参数 if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) { printf("model is NCHW input fmt\n"); channel = input_attrs[0].dims[1]; height = input_attrs[0].dims[2]; width = input_attrs[0].dims[3]; } else { printf("model is NHWC input fmt\n"); height = input_attrs[0].dims[1]; width = input_attrs[0].dims[2]; channel = input_attrs[0].dims[3]; } memset(inputs, 0, sizeof(inputs)); inputs[0].index = 0; inputs[0].type = RKNN_TENSOR_UINT8; inputs[0].size = width * height * channel; inputs[0].fmt = RKNN_TENSOR_NHWC; inputs[0].pass_through = 0; } rknn_lite::~rknn_lite() { ret = rknn_destroy(rkModel); delete[] input_attrs; delete[] output_attrs; if (model_data) free(model_data); } int rknn_lite::interf() { cv::Mat img; // 获取图像宽高 int img_width = ori_img.cols; int img_height = ori_img.rows; cv::cvtColor(ori_img, img, cv::COLOR_BGR2RGB); // init rga context // rga是rk自家的绘图库,绘图效率高于OpenCV rga_buffer_t src; rga_buffer_t dst; memset(&src, 0, sizeof(src)); memset(&dst, 0, sizeof(dst)); im_rect src_rect; im_rect dst_rect; memset(&src_rect, 0, sizeof(src_rect)); memset(&dst_rect, 0, sizeof(dst_rect)); // You may not need resize when src resulotion equals to dst resulotion void *resize_buf = nullptr; // 如果输入图像不是指定格式 if (img_width != width || img_height != height) { resize_buf = malloc( height * width * channel); memset(resize_buf, 0x00, height * width * channel); src = wrapbuffer_virtualaddr((void *)img.data, img_width, img_height, RK_FORMAT_RGB_888); dst = wrapbuffer_virtualaddr((void *)resize_buf, width, height, RK_FORMAT_RGB_888); ret = imcheck(src, dst, src_rect, dst_rect); if (IM_STATUS_NOERROR != ret) { printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS) ret)); exit(-1); } IM_STATUS STATUS = imresize(src, dst); cv::Mat resize_img(cv::Size( width, height), CV_8UC3, resize_buf); inputs[0].buf = resize_buf; } else inputs[0].buf = (void *)img.data; // 设置rknn的输入数据 rknn_inputs_set( rkModel, io_num.n_input, inputs); // 设置输出 rknn_output outputs[ io_num.n_output]; memset(outputs, 0, sizeof(outputs)); for (int i = 0; i < io_num.n_output; i++) outputs[i].want_float = 0; // 调用npu进行推演 ret = rknn_run( rkModel, NULL); // 获取npu的推演输出结果 ret = rknn_outputs_get( rkModel, io_num.n_output, outputs, NULL); // 总之就是绘图部分 // post process // width是模型需要的输入宽度, img_width是图片的实际宽度 const float nms_threshold = NMS_THRESH; const float box_conf_threshold = BOX_THRESH; float scale_w = (float) width / img_width; float scale_h = (float) height / img_height; detect_result_group_t detect_result_group; std::vector out_scales; std::vector out_zps; for (int i = 0; i < io_num.n_output; ++i) { out_scales.push_back( output_attrs[i].scale); out_zps.push_back( output_attrs[i].zp); } post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width, box_conf_threshold, nms_threshold, scale_w, scale_h, out_zps, out_scales, &detect_result_group); // Draw Objects char text[256]; for (int i = 0; i < detect_result_group.count; i++) { detect_result_t *det_result = &(detect_result_group.results[i]); // 获取框的坐标 int x1 = det_result->box.left; int y1 = det_result->box.top; int x2 = det_result->box.right; int y2 = det_result->box.bottom; // 新标签格式:[序号] 类别 置信度% (x1,y1) (x2,y2) #define SHOW_CONFIDENCE 0 // 0:隐藏置信度,1:显示置信度 sprintf(text, "[%d] %s " #if SHOW_CONFIDENCE "%.1f%% " #endif "(%d,%d) (%d,%d)", i + 1, det_result->name, #if SHOW_CONFIDENCE det_result->prop * 100, #endif x1, y1, x2, y2); // 绘制检测框(红色,线宽3像素) rectangle(ori_img, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(0, 0, 255), 3); // 在框上方显示标签(白色文字) putText(ori_img, text, cv::Point(x1, y1 - 5), // 文字位置微调(y1-5) cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 255, 0), 1); //BGR格式确定颜色, } ret = rknn_outputs_release( rkModel, io_num.n_output, outputs); if (resize_buf) { free(resize_buf); } return 0; } static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz) { unsigned char *data; int ret; data = NULL; if (NULL == fp) { return NULL; } ret = fseek(fp, ofst, SEEK_SET); if (ret != 0) { printf("blob seek failure.\n"); return NULL; } data = (unsigned char *)malloc(sz); if (data == NULL) { printf("buffer malloc failure.\n"); return NULL; } ret = fread(data, 1, sz, fp); return data; } static unsigned char *load_model(const char *filename, int *model_size) { FILE *fp; unsigned char *data; fp = fopen(filename, "rb"); if (NULL == fp) { printf("Open file %s failed.\n", filename); return NULL; } fseek(fp, 0, SEEK_END); int size = ftell(fp); data = load_data(fp, 0, size); fclose(fp); *model_size = size; return data; } #endif