HDMI输入直至Yolov5识别全流程代码
This commit is contained in:
114
NpuYoloV5/06_rknn-cpp-Multithreading-main/src/main.cc
Normal file
114
NpuYoloV5/06_rknn-cpp-Multithreading-main/src/main.cc
Normal file
@@ -0,0 +1,114 @@
|
||||
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/*-------------------------------------------
|
||||
Includes
|
||||
-------------------------------------------*/
|
||||
#include <stdio.h>
|
||||
#include <sys/time.h>
|
||||
#include <thread>
|
||||
#include <queue>
|
||||
#include <vector>
|
||||
#define _BASETSD_H
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "rknnPool.hpp"
|
||||
#include "ThreadPool.hpp"
|
||||
using std::queue;
|
||||
using std::time;
|
||||
using std::time_t;
|
||||
using std::vector;
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
char *model_name = NULL;
|
||||
if (argc != 3)
|
||||
{
|
||||
printf("Usage: %s <rknn model> <jpg> \n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
model_name = (char *)argv[1]; // 参数二,模型所在路径
|
||||
char *image_name = argv[2]; // 参数三, 视频/摄像头
|
||||
printf("模型名称:\t%s\n", model_name);
|
||||
|
||||
cv::VideoCapture capture;
|
||||
cv::namedWindow("Camera FPS");
|
||||
if (strlen(image_name) == 1)
|
||||
capture.open((int)(image_name[0] - '0'));
|
||||
else
|
||||
capture.open(image_name);
|
||||
|
||||
// 设置线程数
|
||||
int n = 6, frames = 0;
|
||||
printf("线程数:\t%d\n", n);
|
||||
// 类似于多个rk模型的集合?
|
||||
vector<rknn_lite *> rkpool;
|
||||
// 线程池
|
||||
dpool::ThreadPool pool(n);
|
||||
// 线程队列
|
||||
queue<std::future<int>> futs;
|
||||
|
||||
//初始化
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
rknn_lite *ptr = new rknn_lite(model_name, i % 3);
|
||||
rkpool.push_back(ptr);
|
||||
capture >> ptr->ori_img;
|
||||
futs.push(pool.submit(&rknn_lite::interf, &(*ptr)));
|
||||
}
|
||||
|
||||
struct timeval time;
|
||||
gettimeofday(&time, nullptr);
|
||||
auto initTime = time.tv_sec * 1000 + time.tv_usec / 1000;
|
||||
|
||||
gettimeofday(&time, nullptr);
|
||||
long tmpTime, lopTime = time.tv_sec * 1000 + time.tv_usec / 1000;
|
||||
|
||||
while (capture.isOpened())
|
||||
{
|
||||
if (futs.front().get() != 0)
|
||||
break;
|
||||
futs.pop();
|
||||
cv::imshow("Camera FPS", rkpool[frames % n]->ori_img);
|
||||
if (cv::waitKey(1) == 'q') // 延时1毫秒,按q键退出
|
||||
break;
|
||||
if(!capture.read(rkpool[frames % n]->ori_img))
|
||||
break;
|
||||
futs.push(pool.submit(&rknn_lite::interf, &(*rkpool[frames++ % n])));
|
||||
|
||||
if(frames % 60 == 0){
|
||||
gettimeofday(&time, nullptr);
|
||||
tmpTime = time.tv_sec * 1000 + time.tv_usec / 1000;
|
||||
printf("60帧平均帧率:\t%f帧\n", 60000.0 / (float)(tmpTime - lopTime));
|
||||
lopTime = tmpTime;
|
||||
}
|
||||
}
|
||||
|
||||
gettimeofday(&time, nullptr);
|
||||
printf("\n平均帧率:\t%f帧\n", float(frames) / (float)(time.tv_sec * 1000 + time.tv_usec / 1000 - initTime + 0.0001) * 1000.0);
|
||||
|
||||
// 释放剩下的资源
|
||||
while (!futs.empty())
|
||||
{
|
||||
if (futs.front().get())
|
||||
break;
|
||||
futs.pop();
|
||||
}
|
||||
for (int i = 0; i < n; i++)
|
||||
delete rkpool[i];
|
||||
capture.release();
|
||||
cv::destroyAllWindows();
|
||||
return 0;
|
||||
}
|
||||
345
NpuYoloV5/06_rknn-cpp-Multithreading-main/src/postprocess.cc
Normal file
345
NpuYoloV5/06_rknn-cpp-Multithreading-main/src/postprocess.cc
Normal file
@@ -0,0 +1,345 @@
|
||||
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "postprocess.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#define LABEL_NALE_TXT_PATH "./model/coco_80_labels_list.txt"
|
||||
|
||||
static char* labels[OBJ_CLASS_NUM];
|
||||
|
||||
const int anchor0[6] = {10, 13, 16, 30, 33, 23};
|
||||
const int anchor1[6] = {30, 61, 62, 45, 59, 119};
|
||||
const int anchor2[6] = {116, 90, 156, 198, 373, 326};
|
||||
|
||||
inline static int clamp(float val, int min, int max) { return val > min ? (val < max ? val : max) : min; }
|
||||
|
||||
char* readLine(FILE* fp, char* buffer, int* len)
|
||||
{
|
||||
int ch;
|
||||
int i = 0;
|
||||
size_t buff_len = 0;
|
||||
|
||||
buffer = (char*)malloc(buff_len + 1);
|
||||
if (!buffer)
|
||||
return NULL; // Out of memory
|
||||
|
||||
while ((ch = fgetc(fp)) != '\n' && ch != EOF) {
|
||||
buff_len++;
|
||||
void* tmp = realloc(buffer, buff_len + 1);
|
||||
if (tmp == NULL) {
|
||||
free(buffer);
|
||||
return NULL; // Out of memory
|
||||
}
|
||||
buffer = (char*)tmp;
|
||||
|
||||
buffer[i] = (char)ch;
|
||||
i++;
|
||||
}
|
||||
buffer[i] = '\0';
|
||||
|
||||
*len = buff_len;
|
||||
|
||||
// Detect end
|
||||
if (ch == EOF && (i == 0 || ferror(fp))) {
|
||||
free(buffer);
|
||||
return NULL;
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
|
||||
int readLines(const char* fileName, char* lines[], int max_line)
|
||||
{
|
||||
FILE* file = fopen(fileName, "r");
|
||||
char* s;
|
||||
int i = 0;
|
||||
int n = 0;
|
||||
|
||||
if (file == NULL) {
|
||||
printf("Open %s fail!\n", fileName);
|
||||
return -1;
|
||||
}
|
||||
|
||||
while ((s = readLine(file, s, &n)) != NULL) {
|
||||
lines[i++] = s;
|
||||
if (i >= max_line)
|
||||
break;
|
||||
}
|
||||
fclose(file);
|
||||
return i;
|
||||
}
|
||||
|
||||
int loadLabelName(const char* locationFilename, char* label[])
|
||||
{
|
||||
printf("loadLabelName %s\n", locationFilename);
|
||||
readLines(locationFilename, label, OBJ_CLASS_NUM);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1,
|
||||
float ymax1)
|
||||
{
|
||||
float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0);
|
||||
float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0);
|
||||
float i = w * h;
|
||||
float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i;
|
||||
return u <= 0.f ? 0.f : (i / u);
|
||||
}
|
||||
|
||||
static int nms(int validCount, std::vector<float>& outputLocations, std::vector<int> classIds, std::vector<int>& order,
|
||||
int filterId, float threshold)
|
||||
{
|
||||
for (int i = 0; i < validCount; ++i) {
|
||||
if (order[i] == -1 || classIds[i] != filterId) {
|
||||
continue;
|
||||
}
|
||||
int n = order[i];
|
||||
for (int j = i + 1; j < validCount; ++j) {
|
||||
int m = order[j];
|
||||
if (m == -1 || classIds[i] != filterId) {
|
||||
continue;
|
||||
}
|
||||
float xmin0 = outputLocations[n * 4 + 0];
|
||||
float ymin0 = outputLocations[n * 4 + 1];
|
||||
float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2];
|
||||
float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3];
|
||||
|
||||
float xmin1 = outputLocations[m * 4 + 0];
|
||||
float ymin1 = outputLocations[m * 4 + 1];
|
||||
float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2];
|
||||
float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3];
|
||||
|
||||
float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1);
|
||||
|
||||
if (iou > threshold) {
|
||||
order[j] = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int quick_sort_indice_inverse(std::vector<float>& input, int left, int right, std::vector<int>& indices)
|
||||
{
|
||||
float key;
|
||||
int key_index;
|
||||
int low = left;
|
||||
int high = right;
|
||||
if (left < right) {
|
||||
key_index = indices[left];
|
||||
key = input[left];
|
||||
while (low < high) {
|
||||
while (low < high && input[high] <= key) {
|
||||
high--;
|
||||
}
|
||||
input[low] = input[high];
|
||||
indices[low] = indices[high];
|
||||
while (low < high && input[low] >= key) {
|
||||
low++;
|
||||
}
|
||||
input[high] = input[low];
|
||||
indices[high] = indices[low];
|
||||
}
|
||||
input[low] = key;
|
||||
indices[low] = key_index;
|
||||
quick_sort_indice_inverse(input, left, low - 1, indices);
|
||||
quick_sort_indice_inverse(input, low + 1, right, indices);
|
||||
}
|
||||
return low;
|
||||
}
|
||||
|
||||
static float sigmoid(float x) { return 1.0 / (1.0 + expf(-x)); }
|
||||
|
||||
static float unsigmoid(float y) { return -1.0 * logf((1.0 / y) - 1.0); }
|
||||
|
||||
inline static int32_t __clip(float val, float min, float max)
|
||||
{
|
||||
float f = val <= min ? min : (val >= max ? max : val);
|
||||
return f;
|
||||
}
|
||||
|
||||
static int8_t qnt_f32_to_affine(float f32, int32_t zp, float scale)
|
||||
{
|
||||
float dst_val = (f32 / scale) + zp;
|
||||
int8_t res = (int8_t)__clip(dst_val, -128, 127);
|
||||
return res;
|
||||
}
|
||||
|
||||
static float deqnt_affine_to_f32(int8_t qnt, int32_t zp, float scale) { return ((float)qnt - (float)zp) * scale; }
|
||||
|
||||
static int process(int8_t* input, int* anchor, int grid_h, int grid_w, int height, int width, int stride,
|
||||
std::vector<float>& boxes, std::vector<float>& objProbs, std::vector<int>& classId, float threshold,
|
||||
int32_t zp, float scale)
|
||||
{
|
||||
int validCount = 0;
|
||||
int grid_len = grid_h * grid_w;
|
||||
float thres = unsigmoid(threshold);
|
||||
int8_t thres_i8 = qnt_f32_to_affine(thres, zp, scale);
|
||||
for (int a = 0; a < 3; a++) {
|
||||
for (int i = 0; i < grid_h; i++) {
|
||||
for (int j = 0; j < grid_w; j++) {
|
||||
int8_t box_confidence = input[(PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j];
|
||||
if (box_confidence >= thres_i8) {
|
||||
int offset = (PROP_BOX_SIZE * a) * grid_len + i * grid_w + j;
|
||||
int8_t* in_ptr = input + offset;
|
||||
float box_x = sigmoid(deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5;
|
||||
float box_y = sigmoid(deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5;
|
||||
float box_w = sigmoid(deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0;
|
||||
float box_h = sigmoid(deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0;
|
||||
box_x = (box_x + j) * (float)stride;
|
||||
box_y = (box_y + i) * (float)stride;
|
||||
box_w = box_w * box_w * (float)anchor[a * 2];
|
||||
box_h = box_h * box_h * (float)anchor[a * 2 + 1];
|
||||
box_x -= (box_w / 2.0);
|
||||
box_y -= (box_h / 2.0);
|
||||
|
||||
int8_t maxClassProbs = in_ptr[5 * grid_len];
|
||||
int maxClassId = 0;
|
||||
for (int k = 1; k < OBJ_CLASS_NUM; ++k) {
|
||||
int8_t prob = in_ptr[(5 + k) * grid_len];
|
||||
if (prob > maxClassProbs) {
|
||||
maxClassId = k;
|
||||
maxClassProbs = prob;
|
||||
}
|
||||
}
|
||||
if (maxClassProbs>thres_i8){
|
||||
objProbs.push_back(sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale))* sigmoid(deqnt_affine_to_f32(box_confidence, zp, scale)));
|
||||
classId.push_back(maxClassId);
|
||||
validCount++;
|
||||
boxes.push_back(box_x);
|
||||
boxes.push_back(box_y);
|
||||
boxes.push_back(box_w);
|
||||
boxes.push_back(box_h);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return validCount;
|
||||
}
|
||||
|
||||
int post_process(int8_t* input0, int8_t* input1, int8_t* input2, int model_in_h, int model_in_w, float conf_threshold,
|
||||
float nms_threshold, float scale_w, float scale_h, std::vector<int32_t>& qnt_zps,
|
||||
std::vector<float>& qnt_scales, detect_result_group_t* group)
|
||||
{
|
||||
static int init = -1;
|
||||
if (init == -1) {
|
||||
int ret = 0;
|
||||
ret = loadLabelName(LABEL_NALE_TXT_PATH, labels);
|
||||
if (ret < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
init = 0;
|
||||
}
|
||||
memset(group, 0, sizeof(detect_result_group_t));
|
||||
|
||||
std::vector<float> filterBoxes;
|
||||
std::vector<float> objProbs;
|
||||
std::vector<int> classId;
|
||||
|
||||
// stride 8
|
||||
int stride0 = 8;
|
||||
int grid_h0 = model_in_h / stride0;
|
||||
int grid_w0 = model_in_w / stride0;
|
||||
int validCount0 = 0;
|
||||
validCount0 = process(input0, (int*)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, stride0, filterBoxes, objProbs,
|
||||
classId, conf_threshold, qnt_zps[0], qnt_scales[0]);
|
||||
|
||||
// stride 16
|
||||
int stride1 = 16;
|
||||
int grid_h1 = model_in_h / stride1;
|
||||
int grid_w1 = model_in_w / stride1;
|
||||
int validCount1 = 0;
|
||||
validCount1 = process(input1, (int*)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, stride1, filterBoxes, objProbs,
|
||||
classId, conf_threshold, qnt_zps[1], qnt_scales[1]);
|
||||
|
||||
// stride 32
|
||||
int stride2 = 32;
|
||||
int grid_h2 = model_in_h / stride2;
|
||||
int grid_w2 = model_in_w / stride2;
|
||||
int validCount2 = 0;
|
||||
validCount2 = process(input2, (int*)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, stride2, filterBoxes, objProbs,
|
||||
classId, conf_threshold, qnt_zps[2], qnt_scales[2]);
|
||||
|
||||
int validCount = validCount0 + validCount1 + validCount2;
|
||||
// no object detect
|
||||
if (validCount <= 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::vector<int> indexArray;
|
||||
for (int i = 0; i < validCount; ++i) {
|
||||
indexArray.push_back(i);
|
||||
}
|
||||
|
||||
quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray);
|
||||
|
||||
std::set<int> class_set(std::begin(classId), std::end(classId));
|
||||
|
||||
for (auto c : class_set) {
|
||||
nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold);
|
||||
}
|
||||
|
||||
int last_count = 0;
|
||||
group->count = 0;
|
||||
/* box valid detect target */
|
||||
for (int i = 0; i < validCount; ++i) {
|
||||
if (indexArray[i] == -1 || last_count >= OBJ_NUMB_MAX_SIZE) {
|
||||
continue;
|
||||
}
|
||||
int n = indexArray[i];
|
||||
|
||||
float x1 = filterBoxes[n * 4 + 0];
|
||||
float y1 = filterBoxes[n * 4 + 1];
|
||||
float x2 = x1 + filterBoxes[n * 4 + 2];
|
||||
float y2 = y1 + filterBoxes[n * 4 + 3];
|
||||
int id = classId[n];
|
||||
float obj_conf = objProbs[i];
|
||||
|
||||
group->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w) / scale_w);
|
||||
group->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h) / scale_h);
|
||||
group->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w) / scale_w);
|
||||
group->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h) / scale_h);
|
||||
group->results[last_count].prop = obj_conf;
|
||||
char* label = labels[id];
|
||||
strncpy(group->results[last_count].name, label, OBJ_NAME_MAX_SIZE);
|
||||
|
||||
// printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left,
|
||||
// group->results[last_count].box.top,
|
||||
// group->results[last_count].box.right, group->results[last_count].box.bottom, label);
|
||||
last_count++;
|
||||
}
|
||||
group->count = last_count;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void deinitPostProcess()
|
||||
{
|
||||
for (int i = 0; i < OBJ_CLASS_NUM; i++) {
|
||||
if (labels[i] != nullptr) {
|
||||
free(labels[i]);
|
||||
labels[i] = nullptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user