HDMI输入直至Yolov5识别全流程代码
This commit is contained in:
BIN
NpuYoloV5/04_yolov5/bus.jpg
Normal file
BIN
NpuYoloV5/04_yolov5/bus.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 177 KiB |
41
NpuYoloV5/04_yolov5/camera_demo.py
Normal file
41
NpuYoloV5/04_yolov5/camera_demo.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import cv2
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
def main():
|
||||
cap = cv2.VideoCapture('/dev/video10')
|
||||
frames, loopTime, initTime = 0, time.time(), time.time()
|
||||
fps = 0
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("Failed to read frame")
|
||||
break
|
||||
|
||||
# 检查帧数据是否需要重塑
|
||||
if frame.size == 1280 * 720 * 3: # 检查是否为扁平化数据
|
||||
frame = frame.reshape((720, 1280, 3)).astype(np.uint8)
|
||||
else:
|
||||
print(f"Unexpected frame shape: {frame.shape}")
|
||||
|
||||
# 显示帧
|
||||
frames += 1
|
||||
if frames % 30 == 0:
|
||||
fps = 30 / (time.time() - loopTime)
|
||||
print(f"30帧平均帧率: {fps:.2f} 帧")
|
||||
loopTime = time.time()
|
||||
|
||||
cv2.putText(frame, f"FPS: {fps:.2f}", (10, 30),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
||||
cv2.imshow("MIPI Camera", frame)
|
||||
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
print(f"总平均帧率: {frames / (time.time() - initTime):.2f}")
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
BIN
NpuYoloV5/04_yolov5/check0_base_optimize.onnx
Normal file
BIN
NpuYoloV5/04_yolov5/check0_base_optimize.onnx
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/check2_correct_ops.onnx
Normal file
BIN
NpuYoloV5/04_yolov5/check2_correct_ops.onnx
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/check3_fuse_ops.onnx
Normal file
BIN
NpuYoloV5/04_yolov5/check3_fuse_ops.onnx
Normal file
Binary file not shown.
1
NpuYoloV5/04_yolov5/dataset.txt
Normal file
1
NpuYoloV5/04_yolov5/dataset.txt
Normal file
@@ -0,0 +1 @@
|
||||
bus.jpg
|
||||
BIN
NpuYoloV5/04_yolov5/onnx_yolov5_0.npy
Normal file
BIN
NpuYoloV5/04_yolov5/onnx_yolov5_0.npy
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/onnx_yolov5_1.npy
Normal file
BIN
NpuYoloV5/04_yolov5/onnx_yolov5_1.npy
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/onnx_yolov5_2.npy
Normal file
BIN
NpuYoloV5/04_yolov5/onnx_yolov5_2.npy
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/result.jpg
Normal file
BIN
NpuYoloV5/04_yolov5/result.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 189 KiB |
BIN
NpuYoloV5/04_yolov5/test.mp4
Normal file
BIN
NpuYoloV5/04_yolov5/test.mp4
Normal file
Binary file not shown.
319
NpuYoloV5/04_yolov5/test.py
Normal file
319
NpuYoloV5/04_yolov5/test.py
Normal file
@@ -0,0 +1,319 @@
|
||||
import os
|
||||
import urllib
|
||||
import traceback
|
||||
import time
|
||||
import sys
|
||||
import numpy as np
|
||||
import cv2
|
||||
from rknn.api import RKNN
|
||||
|
||||
ONNX_MODEL = 'yolov5s.onnx'
|
||||
RKNN_MODEL = 'yolov5s.rknn'
|
||||
IMG_PATH = './bus.jpg'
|
||||
DATASET = './dataset.txt'
|
||||
|
||||
QUANTIZE_ON = True
|
||||
|
||||
OBJ_THRESH = 0.25
|
||||
NMS_THRESH = 0.45
|
||||
IMG_SIZE = 640
|
||||
|
||||
CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
|
||||
"fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
|
||||
"bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
|
||||
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
|
||||
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
|
||||
"pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
|
||||
"oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert [x, y, w, h] to [x1, y1, x2, y2]
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
def process(input, mask, anchors):
|
||||
|
||||
anchors = [anchors[i] for i in mask]
|
||||
grid_h, grid_w = map(int, input.shape[0:2])
|
||||
|
||||
box_confidence = sigmoid(input[..., 4])
|
||||
box_confidence = np.expand_dims(box_confidence, axis=-1)
|
||||
|
||||
box_class_probs = sigmoid(input[..., 5:])
|
||||
|
||||
box_xy = sigmoid(input[..., :2])*2 - 0.5
|
||||
|
||||
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
|
||||
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
|
||||
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
grid = np.concatenate((col, row), axis=-1)
|
||||
box_xy += grid
|
||||
box_xy *= int(IMG_SIZE/grid_h)
|
||||
|
||||
box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
|
||||
box_wh = box_wh * anchors
|
||||
|
||||
box = np.concatenate((box_xy, box_wh), axis=-1)
|
||||
|
||||
return box, box_confidence, box_class_probs
|
||||
|
||||
|
||||
def filter_boxes(boxes, box_confidences, box_class_probs):
|
||||
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
box_confidences: ndarray, confidences of objects.
|
||||
box_class_probs: ndarray, class_probs of objects.
|
||||
|
||||
# Returns
|
||||
boxes: ndarray, filtered boxes.
|
||||
classes: ndarray, classes for boxes.
|
||||
scores: ndarray, scores for boxes.
|
||||
"""
|
||||
boxes = boxes.reshape(-1, 4)
|
||||
box_confidences = box_confidences.reshape(-1)
|
||||
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
|
||||
|
||||
_box_pos = np.where(box_confidences >= OBJ_THRESH)
|
||||
boxes = boxes[_box_pos]
|
||||
box_confidences = box_confidences[_box_pos]
|
||||
box_class_probs = box_class_probs[_box_pos]
|
||||
|
||||
class_max_score = np.max(box_class_probs, axis=-1)
|
||||
classes = np.argmax(box_class_probs, axis=-1)
|
||||
_class_pos = np.where(class_max_score >= OBJ_THRESH)
|
||||
|
||||
boxes = boxes[_class_pos]
|
||||
classes = classes[_class_pos]
|
||||
scores = (class_max_score* box_confidences)[_class_pos]
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def nms_boxes(boxes, scores):
|
||||
"""Suppress non-maximal boxes.
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
|
||||
# Returns
|
||||
keep: ndarray, index of effective boxes.
|
||||
"""
|
||||
x = boxes[:, 0]
|
||||
y = boxes[:, 1]
|
||||
w = boxes[:, 2] - boxes[:, 0]
|
||||
h = boxes[:, 3] - boxes[:, 1]
|
||||
|
||||
areas = w * h
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
|
||||
xx1 = np.maximum(x[i], x[order[1:]])
|
||||
yy1 = np.maximum(y[i], y[order[1:]])
|
||||
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
|
||||
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
|
||||
|
||||
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
|
||||
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
|
||||
inter = w1 * h1
|
||||
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
inds = np.where(ovr <= NMS_THRESH)[0]
|
||||
order = order[inds + 1]
|
||||
keep = np.array(keep)
|
||||
return keep
|
||||
|
||||
|
||||
def yolov5_post_process(input_data):
|
||||
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
||||
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
||||
[59, 119], [116, 90], [156, 198], [373, 326]]
|
||||
|
||||
boxes, classes, scores = [], [], []
|
||||
for input, mask in zip(input_data, masks):
|
||||
b, c, s = process(input, mask, anchors)
|
||||
b, c, s = filter_boxes(b, c, s)
|
||||
boxes.append(b)
|
||||
classes.append(c)
|
||||
scores.append(s)
|
||||
|
||||
boxes = np.concatenate(boxes)
|
||||
boxes = xywh2xyxy(boxes)
|
||||
classes = np.concatenate(classes)
|
||||
scores = np.concatenate(scores)
|
||||
|
||||
nboxes, nclasses, nscores = [], [], []
|
||||
for c in set(classes):
|
||||
inds = np.where(classes == c)
|
||||
b = boxes[inds]
|
||||
c = classes[inds]
|
||||
s = scores[inds]
|
||||
|
||||
keep = nms_boxes(b, s)
|
||||
|
||||
nboxes.append(b[keep])
|
||||
nclasses.append(c[keep])
|
||||
nscores.append(s[keep])
|
||||
|
||||
if not nclasses and not nscores:
|
||||
return None, None, None
|
||||
|
||||
boxes = np.concatenate(nboxes)
|
||||
classes = np.concatenate(nclasses)
|
||||
scores = np.concatenate(nscores)
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def draw(image, boxes, scores, classes):
|
||||
"""Draw the boxes on the image.
|
||||
|
||||
# Argument:
|
||||
image: original image.
|
||||
boxes: ndarray, boxes of objects.
|
||||
classes: ndarray, classes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
all_classes: all classes name.
|
||||
"""
|
||||
for box, score, cl in zip(boxes, scores, classes):
|
||||
top, left, right, bottom = box
|
||||
print('class: {}, score: {}'.format(CLASSES[cl], score))
|
||||
print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
|
||||
top = int(top)
|
||||
left = int(left)
|
||||
right = int(right)
|
||||
bottom = int(bottom)
|
||||
|
||||
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
|
||||
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
|
||||
(top, left - 6),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6, (0, 0, 255), 2)
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, ratio, (dw, dh)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create RKNN object
|
||||
rknn = RKNN(verbose=True)
|
||||
|
||||
# pre-process config
|
||||
print('--> Config model')
|
||||
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform="rk3588")
|
||||
print('done')
|
||||
|
||||
# Load ONNX model
|
||||
print('--> Loading model')
|
||||
ret = rknn.load_onnx(model=ONNX_MODEL)
|
||||
if ret != 0:
|
||||
print('Load model failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Build model
|
||||
print('--> Building model')
|
||||
ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
|
||||
if ret != 0:
|
||||
print('Build model failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Export RKNN model
|
||||
print('--> Export rknn model')
|
||||
ret = rknn.export_rknn(RKNN_MODEL)
|
||||
if ret != 0:
|
||||
print('Export rknn model failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Init runtime environment
|
||||
print('--> Init runtime environment')
|
||||
ret = rknn.init_runtime(target="rk3588")
|
||||
# ret = rknn.init_runtime('rk3566')
|
||||
if ret != 0:
|
||||
print('Init runtime environment failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Set inputs
|
||||
img = cv2.imread(IMG_PATH)
|
||||
# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
|
||||
|
||||
# Inference
|
||||
print('--> Running model')
|
||||
outputs = rknn.inference(inputs=[img])
|
||||
np.save('./onnx_yolov5_0.npy', outputs[0])
|
||||
np.save('./onnx_yolov5_1.npy', outputs[1])
|
||||
np.save('./onnx_yolov5_2.npy', outputs[2])
|
||||
print('done')
|
||||
|
||||
# post process
|
||||
input0_data = outputs[0]
|
||||
input1_data = outputs[1]
|
||||
input2_data = outputs[2]
|
||||
|
||||
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
|
||||
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
|
||||
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
|
||||
|
||||
input_data = list()
|
||||
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
|
||||
|
||||
boxes, classes, scores = yolov5_post_process(input_data)
|
||||
|
||||
img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
||||
if boxes is not None:
|
||||
draw(img_1, boxes, scores, classes)
|
||||
cv2.imwrite('result.jpg', img_1)
|
||||
print('Save results to result.jpg!')
|
||||
# show output
|
||||
# cv2.imshow("post process result", img_1)
|
||||
# cv2.waitKey(0)
|
||||
# cv2.destroyAllWindows()
|
||||
|
||||
rknn.release()
|
||||
292
NpuYoloV5/04_yolov5/test_rknn.py
Normal file
292
NpuYoloV5/04_yolov5/test_rknn.py
Normal file
@@ -0,0 +1,292 @@
|
||||
import os
|
||||
import urllib
|
||||
import traceback
|
||||
import time
|
||||
import sys
|
||||
import numpy as np
|
||||
import cv2
|
||||
from rknn.api import RKNN
|
||||
|
||||
ONNX_MODEL = 'yolov5s.onnx'
|
||||
RKNN_MODEL = 'yolov5s.rknn'
|
||||
IMG_PATH = './bus.jpg'
|
||||
DATASET = './dataset.txt'
|
||||
|
||||
QUANTIZE_ON = True
|
||||
|
||||
OBJ_THRESH = 0.25
|
||||
NMS_THRESH = 0.45
|
||||
IMG_SIZE = 640
|
||||
|
||||
CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
|
||||
"fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
|
||||
"bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
|
||||
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
|
||||
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
|
||||
"pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
|
||||
"oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert [x, y, w, h] to [x1, y1, x2, y2]
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
def process(input, mask, anchors):
|
||||
|
||||
anchors = [anchors[i] for i in mask]
|
||||
grid_h, grid_w = map(int, input.shape[0:2])
|
||||
|
||||
box_confidence = sigmoid(input[..., 4])
|
||||
box_confidence = np.expand_dims(box_confidence, axis=-1)
|
||||
|
||||
box_class_probs = sigmoid(input[..., 5:])
|
||||
|
||||
box_xy = sigmoid(input[..., :2])*2 - 0.5
|
||||
|
||||
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
|
||||
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
|
||||
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
grid = np.concatenate((col, row), axis=-1)
|
||||
box_xy += grid
|
||||
box_xy *= int(IMG_SIZE/grid_h)
|
||||
|
||||
box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
|
||||
box_wh = box_wh * anchors
|
||||
|
||||
box = np.concatenate((box_xy, box_wh), axis=-1)
|
||||
|
||||
return box, box_confidence, box_class_probs
|
||||
|
||||
|
||||
def filter_boxes(boxes, box_confidences, box_class_probs):
|
||||
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
box_confidences: ndarray, confidences of objects.
|
||||
box_class_probs: ndarray, class_probs of objects.
|
||||
|
||||
# Returns
|
||||
boxes: ndarray, filtered boxes.
|
||||
classes: ndarray, classes for boxes.
|
||||
scores: ndarray, scores for boxes.
|
||||
"""
|
||||
boxes = boxes.reshape(-1, 4)
|
||||
box_confidences = box_confidences.reshape(-1)
|
||||
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
|
||||
|
||||
_box_pos = np.where(box_confidences >= OBJ_THRESH)
|
||||
boxes = boxes[_box_pos]
|
||||
box_confidences = box_confidences[_box_pos]
|
||||
box_class_probs = box_class_probs[_box_pos]
|
||||
|
||||
class_max_score = np.max(box_class_probs, axis=-1)
|
||||
classes = np.argmax(box_class_probs, axis=-1)
|
||||
_class_pos = np.where(class_max_score >= OBJ_THRESH)
|
||||
|
||||
boxes = boxes[_class_pos]
|
||||
classes = classes[_class_pos]
|
||||
scores = (class_max_score* box_confidences)[_class_pos]
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def nms_boxes(boxes, scores):
|
||||
"""Suppress non-maximal boxes.
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
|
||||
# Returns
|
||||
keep: ndarray, index of effective boxes.
|
||||
"""
|
||||
x = boxes[:, 0]
|
||||
y = boxes[:, 1]
|
||||
w = boxes[:, 2] - boxes[:, 0]
|
||||
h = boxes[:, 3] - boxes[:, 1]
|
||||
|
||||
areas = w * h
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
|
||||
xx1 = np.maximum(x[i], x[order[1:]])
|
||||
yy1 = np.maximum(y[i], y[order[1:]])
|
||||
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
|
||||
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
|
||||
|
||||
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
|
||||
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
|
||||
inter = w1 * h1
|
||||
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
inds = np.where(ovr <= NMS_THRESH)[0]
|
||||
order = order[inds + 1]
|
||||
keep = np.array(keep)
|
||||
return keep
|
||||
|
||||
|
||||
def yolov5_post_process(input_data):
|
||||
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
||||
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
||||
[59, 119], [116, 90], [156, 198], [373, 326]]
|
||||
|
||||
boxes, classes, scores = [], [], []
|
||||
for input, mask in zip(input_data, masks):
|
||||
b, c, s = process(input, mask, anchors)
|
||||
b, c, s = filter_boxes(b, c, s)
|
||||
boxes.append(b)
|
||||
classes.append(c)
|
||||
scores.append(s)
|
||||
|
||||
boxes = np.concatenate(boxes)
|
||||
boxes = xywh2xyxy(boxes)
|
||||
classes = np.concatenate(classes)
|
||||
scores = np.concatenate(scores)
|
||||
|
||||
nboxes, nclasses, nscores = [], [], []
|
||||
for c in set(classes):
|
||||
inds = np.where(classes == c)
|
||||
b = boxes[inds]
|
||||
c = classes[inds]
|
||||
s = scores[inds]
|
||||
|
||||
keep = nms_boxes(b, s)
|
||||
|
||||
nboxes.append(b[keep])
|
||||
nclasses.append(c[keep])
|
||||
nscores.append(s[keep])
|
||||
|
||||
if not nclasses and not nscores:
|
||||
return None, None, None
|
||||
|
||||
boxes = np.concatenate(nboxes)
|
||||
classes = np.concatenate(nclasses)
|
||||
scores = np.concatenate(nscores)
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def draw(image, boxes, scores, classes):
|
||||
"""Draw the boxes on the image.
|
||||
|
||||
# Argument:
|
||||
image: original image.
|
||||
boxes: ndarray, boxes of objects.
|
||||
classes: ndarray, classes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
all_classes: all classes name.
|
||||
"""
|
||||
for box, score, cl in zip(boxes, scores, classes):
|
||||
top, left, right, bottom = box
|
||||
print('class: {}, score: {}'.format(CLASSES[cl], score))
|
||||
print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
|
||||
top = int(top)
|
||||
left = int(left)
|
||||
right = int(right)
|
||||
bottom = int(bottom)
|
||||
|
||||
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
|
||||
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
|
||||
(top, left - 6),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6, (0, 0, 255), 2)
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, ratio, (dw, dh)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create RKNN object
|
||||
rknn = RKNN(verbose=True)
|
||||
|
||||
rknn.load_rknn(path="./yolov5s.rknn")
|
||||
|
||||
# Init runtime environment
|
||||
print('--> Init runtime environment')
|
||||
ret = rknn.init_runtime(target="rk3588")
|
||||
# ret = rknn.init_runtime('rk3566')
|
||||
if ret != 0:
|
||||
print('Init runtime environment failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Set inputs
|
||||
img = cv2.imread(IMG_PATH)
|
||||
# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
|
||||
|
||||
# Inference
|
||||
print('--> Running model')
|
||||
outputs = rknn.inference(inputs=[img])
|
||||
np.save('./onnx_yolov5_0.npy', outputs[0])
|
||||
np.save('./onnx_yolov5_1.npy', outputs[1])
|
||||
np.save('./onnx_yolov5_2.npy', outputs[2])
|
||||
print('done')
|
||||
|
||||
# post process
|
||||
input0_data = outputs[0]
|
||||
input1_data = outputs[1]
|
||||
input2_data = outputs[2]
|
||||
|
||||
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
|
||||
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
|
||||
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
|
||||
|
||||
input_data = list()
|
||||
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
|
||||
|
||||
boxes, classes, scores = yolov5_post_process(input_data)
|
||||
|
||||
img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
||||
if boxes is not None:
|
||||
draw(img_1, boxes, scores, classes)
|
||||
cv2.imwrite('result.jpg', img_1)
|
||||
print('Save results to result.jpg!')
|
||||
# show output
|
||||
# cv2.imshow("post process result", img_1)
|
||||
# cv2.waitKey(0)
|
||||
# cv2.destroyAllWindows()
|
||||
|
||||
rknn.release()
|
||||
292
NpuYoloV5/04_yolov5/test_rknn_lite.py
Normal file
292
NpuYoloV5/04_yolov5/test_rknn_lite.py
Normal file
@@ -0,0 +1,292 @@
|
||||
import os
|
||||
import urllib
|
||||
import traceback
|
||||
import time
|
||||
import sys
|
||||
import numpy as np
|
||||
import cv2
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
ONNX_MODEL = 'yolov5s.onnx'
|
||||
RKNN_MODEL = 'yolov5s.rknn'
|
||||
IMG_PATH = './bus.jpg'
|
||||
DATASET = './dataset.txt'
|
||||
|
||||
QUANTIZE_ON = True
|
||||
|
||||
OBJ_THRESH = 0.25
|
||||
NMS_THRESH = 0.45
|
||||
IMG_SIZE = 640
|
||||
|
||||
CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
|
||||
"fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
|
||||
"bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
|
||||
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
|
||||
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
|
||||
"pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
|
||||
"oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert [x, y, w, h] to [x1, y1, x2, y2]
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
def process(input, mask, anchors):
|
||||
|
||||
anchors = [anchors[i] for i in mask]
|
||||
grid_h, grid_w = map(int, input.shape[0:2])
|
||||
|
||||
box_confidence = sigmoid(input[..., 4])
|
||||
box_confidence = np.expand_dims(box_confidence, axis=-1)
|
||||
|
||||
box_class_probs = sigmoid(input[..., 5:])
|
||||
|
||||
box_xy = sigmoid(input[..., :2])*2 - 0.5
|
||||
|
||||
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
|
||||
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
|
||||
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
grid = np.concatenate((col, row), axis=-1)
|
||||
box_xy += grid
|
||||
box_xy *= int(IMG_SIZE/grid_h)
|
||||
|
||||
box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
|
||||
box_wh = box_wh * anchors
|
||||
|
||||
box = np.concatenate((box_xy, box_wh), axis=-1)
|
||||
|
||||
return box, box_confidence, box_class_probs
|
||||
|
||||
|
||||
def filter_boxes(boxes, box_confidences, box_class_probs):
|
||||
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
box_confidences: ndarray, confidences of objects.
|
||||
box_class_probs: ndarray, class_probs of objects.
|
||||
|
||||
# Returns
|
||||
boxes: ndarray, filtered boxes.
|
||||
classes: ndarray, classes for boxes.
|
||||
scores: ndarray, scores for boxes.
|
||||
"""
|
||||
boxes = boxes.reshape(-1, 4)
|
||||
box_confidences = box_confidences.reshape(-1)
|
||||
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
|
||||
|
||||
_box_pos = np.where(box_confidences >= OBJ_THRESH)
|
||||
boxes = boxes[_box_pos]
|
||||
box_confidences = box_confidences[_box_pos]
|
||||
box_class_probs = box_class_probs[_box_pos]
|
||||
|
||||
class_max_score = np.max(box_class_probs, axis=-1)
|
||||
classes = np.argmax(box_class_probs, axis=-1)
|
||||
_class_pos = np.where(class_max_score >= OBJ_THRESH)
|
||||
|
||||
boxes = boxes[_class_pos]
|
||||
classes = classes[_class_pos]
|
||||
scores = (class_max_score* box_confidences)[_class_pos]
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def nms_boxes(boxes, scores):
|
||||
"""Suppress non-maximal boxes.
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
|
||||
# Returns
|
||||
keep: ndarray, index of effective boxes.
|
||||
"""
|
||||
x = boxes[:, 0]
|
||||
y = boxes[:, 1]
|
||||
w = boxes[:, 2] - boxes[:, 0]
|
||||
h = boxes[:, 3] - boxes[:, 1]
|
||||
|
||||
areas = w * h
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
|
||||
xx1 = np.maximum(x[i], x[order[1:]])
|
||||
yy1 = np.maximum(y[i], y[order[1:]])
|
||||
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
|
||||
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
|
||||
|
||||
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
|
||||
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
|
||||
inter = w1 * h1
|
||||
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
inds = np.where(ovr <= NMS_THRESH)[0]
|
||||
order = order[inds + 1]
|
||||
keep = np.array(keep)
|
||||
return keep
|
||||
|
||||
|
||||
def yolov5_post_process(input_data):
|
||||
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
||||
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
||||
[59, 119], [116, 90], [156, 198], [373, 326]]
|
||||
|
||||
boxes, classes, scores = [], [], []
|
||||
for input, mask in zip(input_data, masks):
|
||||
b, c, s = process(input, mask, anchors)
|
||||
b, c, s = filter_boxes(b, c, s)
|
||||
boxes.append(b)
|
||||
classes.append(c)
|
||||
scores.append(s)
|
||||
|
||||
boxes = np.concatenate(boxes)
|
||||
boxes = xywh2xyxy(boxes)
|
||||
classes = np.concatenate(classes)
|
||||
scores = np.concatenate(scores)
|
||||
|
||||
nboxes, nclasses, nscores = [], [], []
|
||||
for c in set(classes):
|
||||
inds = np.where(classes == c)
|
||||
b = boxes[inds]
|
||||
c = classes[inds]
|
||||
s = scores[inds]
|
||||
|
||||
keep = nms_boxes(b, s)
|
||||
|
||||
nboxes.append(b[keep])
|
||||
nclasses.append(c[keep])
|
||||
nscores.append(s[keep])
|
||||
|
||||
if not nclasses and not nscores:
|
||||
return None, None, None
|
||||
|
||||
boxes = np.concatenate(nboxes)
|
||||
classes = np.concatenate(nclasses)
|
||||
scores = np.concatenate(nscores)
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def draw(image, boxes, scores, classes):
|
||||
"""Draw the boxes on the image.
|
||||
|
||||
# Argument:
|
||||
image: original image.
|
||||
boxes: ndarray, boxes of objects.
|
||||
classes: ndarray, classes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
all_classes: all classes name.
|
||||
"""
|
||||
for box, score, cl in zip(boxes, scores, classes):
|
||||
top, left, right, bottom = box
|
||||
print('class: {}, score: {}'.format(CLASSES[cl], score))
|
||||
print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
|
||||
top = int(top)
|
||||
left = int(left)
|
||||
right = int(right)
|
||||
bottom = int(bottom)
|
||||
|
||||
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
|
||||
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
|
||||
(top, left - 6),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6, (0, 0, 255), 2)
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, ratio, (dw, dh)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create RKNN object
|
||||
rknn = RKNNLite(verbose=True)
|
||||
|
||||
rknn.load_rknn(path="./yolov5s.rknn")
|
||||
|
||||
# Init runtime environment
|
||||
print('--> Init runtime environment')
|
||||
ret = rknn.init_runtime()
|
||||
# ret = rknn.init_runtime('rk3566')
|
||||
if ret != 0:
|
||||
print('Init runtime environment failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# Set inputs
|
||||
img = cv2.imread(IMG_PATH)
|
||||
# img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
|
||||
|
||||
# Inference
|
||||
print('--> Running model')
|
||||
outputs = rknn.inference(inputs=[img])
|
||||
np.save('./onnx_yolov5_0.npy', outputs[0])
|
||||
np.save('./onnx_yolov5_1.npy', outputs[1])
|
||||
np.save('./onnx_yolov5_2.npy', outputs[2])
|
||||
print('done')
|
||||
|
||||
# post process
|
||||
input0_data = outputs[0]
|
||||
input1_data = outputs[1]
|
||||
input2_data = outputs[2]
|
||||
|
||||
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
|
||||
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
|
||||
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
|
||||
|
||||
input_data = list()
|
||||
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
|
||||
|
||||
boxes, classes, scores = yolov5_post_process(input_data)
|
||||
|
||||
img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
||||
if boxes is not None:
|
||||
draw(img_1, boxes, scores, classes)
|
||||
cv2.imwrite('result.jpg', img_1)
|
||||
print('Save results to result.jpg!')
|
||||
# show output
|
||||
# cv2.imshow("post process result", img_1)
|
||||
# cv2.waitKey(0)
|
||||
# cv2.destroyAllWindows()
|
||||
|
||||
rknn.release()
|
||||
312
NpuYoloV5/04_yolov5/test_rknn_lite_hdmi_in.py
Normal file
312
NpuYoloV5/04_yolov5/test_rknn_lite_hdmi_in.py
Normal file
@@ -0,0 +1,312 @@
|
||||
import os
|
||||
import urllib
|
||||
import traceback
|
||||
import time
|
||||
import sys
|
||||
import numpy as np
|
||||
import cv2
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
ONNX_MODEL = 'yolov5s.onnx'
|
||||
RKNN_MODEL = 'yolov5s.rknn'
|
||||
IMG_PATH = './bus.jpg'
|
||||
DATASET = './dataset.txt'
|
||||
|
||||
QUANTIZE_ON = True
|
||||
|
||||
OBJ_THRESH = 0.25
|
||||
NMS_THRESH = 0.45
|
||||
IMG_SIZE = 640
|
||||
|
||||
CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
|
||||
"fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
|
||||
"bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
|
||||
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
|
||||
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
|
||||
"pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
|
||||
"oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
def xywh2xyxy(x):
|
||||
# Convert [x, y, w, h] to [x1, y1, x2, y2]
|
||||
y = np.copy(x)
|
||||
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||
return y
|
||||
|
||||
|
||||
def process(input, mask, anchors):
|
||||
|
||||
anchors = [anchors[i] for i in mask]
|
||||
grid_h, grid_w = map(int, input.shape[0:2])
|
||||
|
||||
box_confidence = sigmoid(input[..., 4])
|
||||
box_confidence = np.expand_dims(box_confidence, axis=-1)
|
||||
|
||||
box_class_probs = sigmoid(input[..., 5:])
|
||||
|
||||
box_xy = sigmoid(input[..., :2])*2 - 0.5
|
||||
|
||||
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
|
||||
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
|
||||
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
|
||||
grid = np.concatenate((col, row), axis=-1)
|
||||
box_xy += grid
|
||||
box_xy *= int(IMG_SIZE/grid_h)
|
||||
|
||||
box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
|
||||
box_wh = box_wh * anchors
|
||||
|
||||
box = np.concatenate((box_xy, box_wh), axis=-1)
|
||||
|
||||
return box, box_confidence, box_class_probs
|
||||
|
||||
|
||||
def filter_boxes(boxes, box_confidences, box_class_probs):
|
||||
"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
box_confidences: ndarray, confidences of objects.
|
||||
box_class_probs: ndarray, class_probs of objects.
|
||||
|
||||
# Returns
|
||||
boxes: ndarray, filtered boxes.
|
||||
classes: ndarray, classes for boxes.
|
||||
scores: ndarray, scores for boxes.
|
||||
"""
|
||||
boxes = boxes.reshape(-1, 4)
|
||||
box_confidences = box_confidences.reshape(-1)
|
||||
box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])
|
||||
|
||||
_box_pos = np.where(box_confidences >= OBJ_THRESH)
|
||||
boxes = boxes[_box_pos]
|
||||
box_confidences = box_confidences[_box_pos]
|
||||
box_class_probs = box_class_probs[_box_pos]
|
||||
|
||||
class_max_score = np.max(box_class_probs, axis=-1)
|
||||
classes = np.argmax(box_class_probs, axis=-1)
|
||||
_class_pos = np.where(class_max_score >= OBJ_THRESH)
|
||||
|
||||
boxes = boxes[_class_pos]
|
||||
classes = classes[_class_pos]
|
||||
scores = (class_max_score* box_confidences)[_class_pos]
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def nms_boxes(boxes, scores):
|
||||
"""Suppress non-maximal boxes.
|
||||
|
||||
# Arguments
|
||||
boxes: ndarray, boxes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
|
||||
# Returns
|
||||
keep: ndarray, index of effective boxes.
|
||||
"""
|
||||
x = boxes[:, 0]
|
||||
y = boxes[:, 1]
|
||||
w = boxes[:, 2] - boxes[:, 0]
|
||||
h = boxes[:, 3] - boxes[:, 1]
|
||||
|
||||
areas = w * h
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
|
||||
xx1 = np.maximum(x[i], x[order[1:]])
|
||||
yy1 = np.maximum(y[i], y[order[1:]])
|
||||
xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
|
||||
yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
|
||||
|
||||
w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
|
||||
h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
|
||||
inter = w1 * h1
|
||||
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
inds = np.where(ovr <= NMS_THRESH)[0]
|
||||
order = order[inds + 1]
|
||||
keep = np.array(keep)
|
||||
return keep
|
||||
|
||||
|
||||
def yolov5_post_process(input_data):
|
||||
masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
|
||||
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
|
||||
[59, 119], [116, 90], [156, 198], [373, 326]]
|
||||
|
||||
boxes, classes, scores = [], [], []
|
||||
for input, mask in zip(input_data, masks):
|
||||
b, c, s = process(input, mask, anchors)
|
||||
b, c, s = filter_boxes(b, c, s)
|
||||
boxes.append(b)
|
||||
classes.append(c)
|
||||
scores.append(s)
|
||||
|
||||
boxes = np.concatenate(boxes)
|
||||
boxes = xywh2xyxy(boxes)
|
||||
classes = np.concatenate(classes)
|
||||
scores = np.concatenate(scores)
|
||||
|
||||
nboxes, nclasses, nscores = [], [], []
|
||||
for c in set(classes):
|
||||
inds = np.where(classes == c)
|
||||
b = boxes[inds]
|
||||
c = classes[inds]
|
||||
s = scores[inds]
|
||||
|
||||
keep = nms_boxes(b, s)
|
||||
|
||||
nboxes.append(b[keep])
|
||||
nclasses.append(c[keep])
|
||||
nscores.append(s[keep])
|
||||
|
||||
if not nclasses and not nscores:
|
||||
return None, None, None
|
||||
|
||||
boxes = np.concatenate(nboxes)
|
||||
classes = np.concatenate(nclasses)
|
||||
scores = np.concatenate(nscores)
|
||||
|
||||
return boxes, classes, scores
|
||||
|
||||
|
||||
def draw(image, boxes, scores, classes):
|
||||
"""Draw the boxes on the image.
|
||||
|
||||
# Argument:
|
||||
image: original image.
|
||||
boxes: ndarray, boxes of objects.
|
||||
classes: ndarray, classes of objects.
|
||||
scores: ndarray, scores of objects.
|
||||
all_classes: all classes name.
|
||||
"""
|
||||
for box, score, cl in zip(boxes, scores, classes):
|
||||
top, left, right, bottom = box
|
||||
# print('class: {}, score: {}'.format(CLASSES[cl], score))
|
||||
# print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
|
||||
top = int(top)
|
||||
left = int(left)
|
||||
right = int(right)
|
||||
bottom = int(bottom)
|
||||
|
||||
cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
|
||||
cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
|
||||
(top, left - 6),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.6, (0, 0, 255), 2)
|
||||
|
||||
|
||||
def letterbox(im, new_shape=(IMG_SIZE, IMG_SIZE), color=(0, 0, 0)):
|
||||
# Resize and pad image while meeting stride-multiple constraints
|
||||
shape = im.shape[:2] # current shape [height, width]
|
||||
if isinstance(new_shape, int):
|
||||
new_shape = (new_shape, new_shape)
|
||||
|
||||
# Scale ratio (new / old)
|
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
||||
|
||||
# Compute padding
|
||||
ratio = r, r # width, height ratios
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
||||
|
||||
dw /= 2 # divide padding into 2 sides
|
||||
dh /= 2
|
||||
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
||||
return im, ratio, (dw, dh)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Create RKNN object
|
||||
rknn = RKNNLite(verbose=False)
|
||||
|
||||
rknn.load_rknn(path="./yolov5s.rknn")
|
||||
|
||||
# Init runtime environment
|
||||
print('--> Init runtime environment')
|
||||
ret = rknn.init_runtime(core_mask=7)
|
||||
# ret = rknn.init_runtime('rk3566')
|
||||
if ret != 0:
|
||||
print('Init runtime environment failed!')
|
||||
exit(ret)
|
||||
print('done')
|
||||
|
||||
# # Set inputs
|
||||
# img = cv2.imread(IMG_PATH)
|
||||
# # img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
|
||||
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
# img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
|
||||
cap = cv2.VideoCapture('test.mp4')
|
||||
frames, loopTime, initTime = 0, time.time(), time.time()
|
||||
fps = 0
|
||||
while True:
|
||||
frames += 1
|
||||
# 从摄像头捕获帧
|
||||
ret, img = cap.read()
|
||||
# 重塑视频帧,只有自己虚拟的才需要
|
||||
# img = img.reshape((720, 1280, 3)).astype(np.uint8)
|
||||
# 如果捕获到帧,则显示它
|
||||
if ret:
|
||||
# Inference
|
||||
# print('--> Running model')
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
|
||||
outputs = rknn.inference(inputs=[img])
|
||||
# np.save('./onnx_yolov5_0.npy', outputs[0])
|
||||
# np.save('./onnx_yolov5_1.npy', outputs[1])
|
||||
# np.save('./onnx_yolov5_2.npy', outputs[2])
|
||||
# print('done')
|
||||
|
||||
# post process
|
||||
input0_data = outputs[0]
|
||||
input1_data = outputs[1]
|
||||
input2_data = outputs[2]
|
||||
|
||||
input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
|
||||
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
|
||||
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
|
||||
|
||||
input_data = list()
|
||||
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
|
||||
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
|
||||
|
||||
boxes, classes, scores = yolov5_post_process(input_data)
|
||||
|
||||
img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
||||
if boxes is not None:
|
||||
draw(img_1, boxes, scores, classes)
|
||||
if frames % 30 == 0:
|
||||
print("30帧平均帧率:\t", 30 / (time.time() - loopTime), "帧")
|
||||
fps = 30 / (time.time() - loopTime)
|
||||
loopTime = time.time()
|
||||
cv2.putText(img_1, "FPS: {:.2f}".format(fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255),
|
||||
2) # 在图像上显示帧率
|
||||
cv2.imshow("MIPI Camera", img_1)
|
||||
# 按下'q'键退出循环
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
# show output
|
||||
# cv2.imshow("post process result", img_1)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
rknn.release()
|
||||
BIN
NpuYoloV5/04_yolov5/video.mp4
Normal file
BIN
NpuYoloV5/04_yolov5/video.mp4
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/yolov5s.onnx
Normal file
BIN
NpuYoloV5/04_yolov5/yolov5s.onnx
Normal file
Binary file not shown.
BIN
NpuYoloV5/04_yolov5/yolov5s.rknn
Normal file
BIN
NpuYoloV5/04_yolov5/yolov5s.rknn
Normal file
Binary file not shown.
Reference in New Issue
Block a user